Name	Orientation	L	D_{298}	$D_{\rm sat}$	T _{sat}	Fit of 1/D vs T	Range	Structural transition	
	and phase		2	2				temperatures; notes	
		mm	mm ² /s	mm ² /s	K	s/mm ²	K		
CaTiO ₃ *	1† orth	0.80	1.336	0.71\$	>1700\$	$0.24041 + 0.0019518T - 6.5443 \times 10^{-7} T^2$	293-990	1200,1600 K	
CaTiO ₃ *	2† orth	1.075	1.70	-	-	$0.10342 + 0.0019184T - 7.6162 \times 10^{-7} T^2$	293-990	1200 K, broke after run	
								fit to first run	
CaTiO ₃ *	3† orth	0.845	1.484	0.67\$	~1900\$	$0.22877 + 0.0017632T - 6.3287 \times 10^{-7} T^2$	293-990	1200,1600 K fit combines 2 runs	
SrTiO ₃	cubic	1.87	4.279	-	-	$-0.033335 + 0.00097117T - 2.0244 \times 10^{-7}T^2$	293-900	Boule, first run, tan	
SrTiO ₃	cubic	1.532	3.02	0.70	~1800	$-0.12178 + 0.00171777 - 5.6751 \times 10^{-7} T^2$	293-1300	Boule, third run, black	
SrTiO ₃ §	cubic	0.991	3.49	-	-	$-0.051524 + 0.0012384T - 3.4015 \times 10^{-7} T^2$	293-950	Plate, first run	
SrTiO ₃ §	cubic	0.985	3.05	0.71	~1800	$-0.057753 + 0.0014801T - 5.8673 \times 10^{-7} T^2$	293-840	Plate, third run, dark	
SrTiO ₃ :Fe¶	cubic	0.505	3.65	0.73	~1800	$-0.037308 + 0.0011412T - 2.6351 \times 10^{-7} T^2$	293-1000	Plate, first run	
SrTiO ₃ :Fe¶	cubic	0.505	2.91			$-0.027431 + 0.0014047T - 5.0859 \times 10^{-7}T^2$	293-800	Plate, second run, dark	
BaTiO ₃	(001) tet	1.018	1.905			-0.47329+0.0033704T	293-390	390, 1100 K, premelting	
BaTiO ₃	(100) tet	0.573	1.123			0.45695+0.0014669 <i>T</i>	293-387	387 K	
BaTiO ₃	cubic	both	1.73‡			$0.55807 + 0.001069T - 2.8346 \times 10^{-8}T^2$	390-900	1100 K, premelting	
KNbO ₃	(110)? orth	0.93	1.958			-0.15349+0.0017938T	293-495	495 K	
KNbO ₃	(110)? orth	2.035	1.693			0.067158+0.0017477T	293-495	495 K	

Table 1. Run conditions and fits to thermal diffusivity at elevated temperature

	-			1				
KNbO ₃	tetragonal	0.93	* +			$-0.010169 + 0.0024206T - 1.4292 \times 10^{-6}T^{2}$	493-678	~685 K (run spacing wide)
KNbO ₃ #	cubic	0.93	‡ ‡			0.73664+0.00032268T	750-1050	Reduced ~1050 K
KTaO ₃	cubic	0.547	4.742			$-0.050405 + 0.00094559T - 1.5221 \times 10^{-7} T^2$	293-1200	~1600 K
LSAT*	cubic	0.516	1.615	0.71	~1300	$+0.34113+0.0010076T-1.6336x10^{-7}T^2$	293-1400	Black run same as colorless
LaAlO ₃	(100) rhomb	1.003	4.102			$-0.10664 + 0.0013367T - 4.9895 \times 10^{-7}T^2$	293-705	~750 K
LaAlO ₃	(110) rhomb	0.541	4.030			$-0.12222 + 0.0014092T - 5.3988 \times 10^{-7} T^2$	293-700	~750 K
LaAlO ₃	(001) rhomb	1.071	4.097					Boule, strong twinning
LaAlO ₃	(100) rhomb	1.055	4.008					Boule, slight twinning
LaAlO ₃	cubic	0.541, 1.003	4.32‡	0.96	1600- 1800	$-0.020134 + 0.00088093T - 1.2173 \times 10^{-7}T^{2}$	850-1620	Sample reddened
YAlO ₃	(100) ortho	0.465	3.913			$-0.17622+0.0016113T-2.9561x10^{-7}T^2$ &	293-1750	MTI sample
YAlO ₃	(100) ortho	0.985	3.758	-	-	$-0.22136+0.0017873T-4.2087x10^{-7}T^{2}$	293-1560	Non-stoichiometric sample from SMC
YAlO ₃ :Tm ¥	(001) ortho	0.975	2.907			$-0.15827 + 0.0018785T - 5.1404 \times 10^{-7} T^2 @$	293-1270	
NdGaO ₃	(100) ortho	0.523	1.93			$-0.1535+0.0025583T-7.6551x10^{-7}T^2$	293-1250	Plate turned blue ~1730 K, <i>D</i> similar to boule
NdGaO ₃	(010) ortho	0.945	1.84			$-0.25247 + 0.0030442T - 11.069 \times 10^{-7} T^2$	293-1250	Boule only
NdGaO ₃	(001) ortho	0.518, 0.734	2.02			$-0.14749 + 0.0023656T - 5.7979 \times 10^{-7} T^2$	293-1250	Fit to both boule and plate

Notes: All fits had residuals better than 0.99. Orth or ortho = orthorhombic (*Pbnm*); tet = tetragonal (*I*4/*mcm*); rhomb = rhombohedral ($R\bar{3}c$) structures.

- * Chemical formulae obtained from electron microprobe analyses are $Ca_{1.01}Mn_{0.001}Fe_{0.007}Ti_{0.99}O_3$ and $La_{0.29}Sr_{0.67}Al_{0.65}Ta_{0.35}O_3$.
- [†]The sample is twinned. Three perpendicular cuts were examined in order to provide an "average" *D*. Section No. 3 provided reproducible data. Both runs were fit.
- ‡ Room temperature values obtained by extrapolating the fit made to the higher temperature data. For BaTiO₃, the extrapolation is over a short temperature range and gives D298 of the cubic polymorph that is higher than that the tetragonal, as is seen at the transition temperature. Extrapolations for KNbO₃ are not reported because the small temperature ranges of the polymorphs do not constrain terms beyond linear and thus do not provide reliable values. The fit for the cubic polymorph of LaAlO₃ should be considered a lower limit, given that the extrapolation is made over 500 K.
- § Appears to be initially partially reduced or non-stoichiometric, see text.
- ¶ Doped with 0.05 atom % Fe^{3+}
- ¥ Doped with 5.3 atom % Tm^{3+}
- #Trend for cubic perovskite was taken from the thin piece $KNbO_3$ which was heated to high *T* in one run. A run on a thicker sample was terminated within tetragonal field (due to a power failure). As the sample was highly fractured, probably twinned during cooling, the results are questionable and are not reported.

\$Pertains to cubic phase of CaTiO₃.

- & From combining our data with *D* of Aggarwal et al.²⁴, the fit for undoped (100) from 200 to 1750 K is 1/D = -0.25271+0.0019025*T* -6.111 x 10⁻⁷ *T*² +1.0144 x 10⁻¹⁰ *T*³. We have assumed that their orientations were interchanged, see Table 2 and the text. The sample from SMC only differs from *D* for the MTI sample near 298 K.
- @ From combining our data on the (001) Tm doped sample with *D* from Aggarwal et al.²⁴ for Yb doped YAlO₃, the fit for (001) sections with ~5 atom % dopant from 150 to 1250 K is $1/D = -0.17027+0.0019133T-5.3556 \times 10^{-7} T^2$. These ions differ little in physical properties and are considered equivalent.

Sample	Density g/cm ³	C _P J/g-K	Mass g/mol	T _{ortho-tet} K	T _{tet-cubic} K	T _{melt} K	Ref.	D_{298} mm ² s ⁻¹	D_{298} mm ² s ⁻¹	Method	Temp K	Ref.
CaTiO ₃	4.1	0.721	135.94	~1384	~1520	2250	41,42,54	1.5 ave	-	-	-	
SrTiO ₃	5.17	0.536	183.48	-	110	2353	51	4.28	4.01	LFA†	>298	23
BaTiO ₃	6.06	0.527	233.21	278	408	1895	26	1.91 ∥ c 1.12 ⊥ c	1.25 ∥ c 1.65 ⊥ c	2 contacts 2 contacts	<298 <298	23 23
KNbO ₃	4.62	~0.57	179.99	498	707	1050	26	2.0 ⊥ c ?	4.18-2.87 k	2 contacts	<298	23
KTaO ₃	7.01	0.375	268.08	-	-	1625	25	4.74	3.27 6.66	LFA†‡ 2 contacts	>298 <298	25 26
LSAT	6.64 6.74	0.35	201.38	-	~150	2143	47	1.61	1.9±0.1 1.33±0.13	LFA† contact	=298 =298	22 44
LaAlO ₃	6.70 6.51 6.52	0.427	213.88	-	806*	2350	45	4.05 ave	4.87 c 4.5±0.5 ? 4.0±0.3 a 3.2 a	1 contact 2 contacts 2 contacts 2, steady st.	<298 =298 <298 <298	45 44 46 43
YAlO ₃	5.35	0.557	163.87	-	-	2143	24	3.91 ∥ a -	4.5 a?§ 3.9 b?§	lfa Au coat lfa Au coat	<298 <298	24 24
YAlO ₃ :2	X 5.35	0.557	163.87	-	-	2143	24	- - 2.91 llc	3.3 c ?§ 2.6 a 2.3 b 2.8 c	Ifa Au coat Ifa Au coat Ifa Au coat Ifa Au coat	<298 <298 <298 <298	24 24 24 24

Table 2. Physical properties at 298 K and transition temperatures from the literature with comparison to present results

NdGaO ₃ 7.66	0.404 2	261.96	-	-	1870	45	1.93 a	2.0 ∥ c =⊥ c	2 contacts	=298	44
							1.84 b	2.3 (110)	1 contact	<298	45
							2.02 c				

Notes: The *Pbnm* convention is used for orthorhombic samples. Results from Aggarwal et al.²⁴ were translated from their reported *Pnma* convention.

*Rhombohedral to cubic transition.

†Analysis did not account for radiative transfer.

‡An overly thick sample was used.

¶Our sample of YAlO₃ ||**b** was doped with 5.3 atom % Tm, whereas that of Aggarwal et al.²⁴ had 5 atom% Yb.

§Based on the order $D_c > D_a > D_b$ for NdGaO₃ and doped YAIO₃, which is consistent with the lattice parameters for the primitive cell (see text), and that our two different samples of YAIO₃ both provided $D_a = 3.9 \text{ mm}^2 \text{s}^{-1}$, we believe that the orientations for pure YAIO₃ for the previous study²⁴ were interchanged. Heat flow parallel to the **a**-axis should yield 3.9 mm² s⁻¹; the **b**-axis should yield 3.3 mm² s⁻¹, and the **c**-axis should yield 4.5 mm² s⁻¹.