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Abstract
Seismic imaging provides an opportunity to constrain mantle wedge
processes associated with subduction, slab dehydration, arc volcan-
ism, and backarc spreading. The mantle wedge is characterized by
a low attenuation forearc, an inclined zone of low velocity and high
attenuation underlying the volcanic front, and a broad region of low
velocity and high attenuation beneath the backarc spreading cen-
ter when present. Seismic velocities, bathymetry, and basalt chem-
istry suggest mantle temperature variations of ∼100◦C between dif-
ferent backarc regions. Rock physics experiments and geodynamic
modeling are essential for interpreting seismic observations. Seis-
mic anisotropy indicates a complex pattern of mantle flow that can
be modeled with along-strike flow in a low viscosity channel beneath
the arc and backarc. Comparison of geodynamic models with seismic
tomographic results using experimentally derived relations between
velocity, attenuation, and temperature suggests the existence of small
melt fractions in the mantle at depths of 30–150 km.
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1. INTRODUCTION

The wedge of uppermost mantle overlying subducting slabs is the locus of many of
the most significant processes controlling the geological evolution of Earth. This
region, including the forearc mantle wedge, volcanic arc, and in some cases a backarc
spreading center, is vital for understanding the processes that shape our planet, in-
cluding arc magmatism, the hydration of the upper mantle by volatiles from the slab,
and in cases of active backarc spreading, the formation of new seafloor at spreading
centers.

The production of arc magmas in the mantle wedge is an important factor in
the geodynamical and geochemical evolution of Earth. Although the relative role
of Phanerozoic arc volcanism in continental crustal formation is still under debate
(Armstrong 1991, Tatsumi 2005, Brown & Rushmer 2006), there can be no doubt that
arc crust has contributed to some extent in the formation of the current continental
crust. In addition, the mantle wedge is highly important because of its involvement
in Earth’s volatile cycle. Water is liberated from the subducting slab by pressure-
and temperature-sensitive dehydration reactions and is either taken up within the
crystal structure of normally anhydrous mantle minerals (Hirschmann et al. 2005)
or transported upward through the wedge in the form of hydrous minerals, a free
fluid, or hydrous melts (Schmidt & Poli 1998, Iwamori 1998). Other volatiles, such
as carbon dioxide, may follow similar paths. Thus, understanding volatile transport
through the mantle wedge is essential to working out the mantle’s volatile budget
(Thompson 1992).

Finally, some intraoceanic arcs are accompanied by backarc spreading centers, so
that significant quantities of new oceanic crust are produced in the mantle wedge.
Although backarc spreading centers have many similarities to mid-ocean ridges,
they show more rapid temporal variations in spreading rate ( Jurdy & Stefanick
1983) and larger, along-strike morphological and geochemical variations (Taylor
& Karner 1983, Taylor & Martinez 2003). Strong variations in volatile content
of the upper mantle in backarcs (Kelley et al. 2006) and the controlling influence
of the subducting slab on flow in the mantle wedge (Sleep & Toksoz 1971, Ribe
1989) may cause unique characteristics in oceanic lithosphere produced above the
wedge.

Many important questions remain regarding the physical processes in the man-
tle wedge. These include the pattern of mantle flow, the mechanism and depth ex-
tent of melt production, the mechanics and timescale of water and melt transport,
and the temperature structure of the mantle wedge. For example, there is debate
about the porosity of melt-forming regions in the mantle, with widely varying es-
timates ranging from less than 0.01% to more than 3% (Lundstrom et al. 1998,
Turner et al. 2000, Faul 2001, Nakajima et al. 2005, Turner et al. 2006), and cor-
responding uncertainty about the rapidity of magma extraction from the mantle.
Arcs with active backarc extension introduce additional questions about the dynam-
ics of backarc spreading centers, the relationship of backarc to arc magma produc-
tion, and the similarities and differences of backarc and mid-ocean ridge spreading
centers.
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Seismological observations, combined with rock mechanics experiments and geo-
dynamic modeling, have the potential to provide important constraints on the
dynamics of the mantle wedge and to answer the questions noted above. In this
paper we present a review of recent progress toward this goal. We first describe seis-
mological observations constraining the structure of the mantle wedge, beginning
in the forearc wedge and extending beneath the arc and backarc, including observa-
tions of seismic anisotropy. Then we describe processes affecting seismic properties
of rocks, including recent progress in laboratory experiments characterizing temper-
ature dependence and melt content. We present geodynamic models for the mantle
wedge that make testable predictions about the spatial distribution of temperature
anomalies and melt production in the mantle wedge. Finally, we compare seismic to-
mographic images with these predictions using the laboratory-derived relationships
between seismic parameters and material properties.

2. SEISMIC OBSERVATIONS

2.1. Structure of the Forearc Mantle

The forearc mantle extends from where the downgoing plate first contacts the over-
riding mantle, usually at depths of 10 to 40 km, to just seaward of the volcanic front.
This region is characterized by exceptionally low seismic attenuation, with the bound-
ary between low attenuation and high attenuation occurring just toward the forearc
side of the arc volcanoes (Roth et al. 1999, Tsumura et al. 2000, Schurr et al. 2003,
Stachnik et al. 2004). Heat flow observations show uniformly low values in the forearc
and a sudden transition to high heat flow in the arc (Furukawa 1993). These observa-
tions suggest a forearc characterized by cold, rheologically strong mantle and a sharp
transition to warmer, lower viscosity mantle near the volcanic front (Kincaid & Sacks
1997, Conder 2005).

The seismic velocity structure of the forearc mantle wedge is more uncertain.
Body wave tomographic images generally show high seismic velocity in the mantle
forearc (Reyners 2006, Zhao et al. 2007) (Figure 1), although the outermost mantle
forearc in Costa Rica shows low mantle P-velocities and high Vp/Vs ratios consistent
with serpentinization (DeShon & Schwartz 2004). Active source surveys have found
evidence of low seismic velocity in the mantle wedge in several arcs that are widely at-
tributed to serpentinization of mantle peridotite by fluids from the downgoing plate.
In the Mariana and Izu-Bonin regions, serpentinite diapirs and seamounts are com-
mon in the forearc (Fryer et al. 1995); a seismic refraction survey over one of them
shows low velocity mantle wedge consistent with serpentinization of the outermost
mantle wedge (Kamimura et al. 2002). In Cascadia, receiver function images (Bostock
et al. 2002), active source seismics (Brocher et al. 2003), and potential field anomalies
(Blakely et al. 2005) all suggest that the seaward edge of the forearc mantle is highly
serpentinized. A possible interpretation of these observations is that the forearc man-
tle wedge generally shows high seismic velocities and low attenuation as a result of
cold temperatures, but that variable serpentinization produces locally low velocities
and anomalous Vp/Vs ratios, particularly in the outer forearc.
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Figure 1
Vertical cross sections of P-wave (a) and S-wave (b) velocity perturbation (in percent) in
northern Japan relative to an average Japan arc model (after Zhao et al. 2007). Colors denote
seismic velocity anomalies, and open circles denote microearthquakes within a 15 km width
along the profile. The land area and active volcanoes are shown at the top of each figure by
bold horizontal lines and triangles.

2.2. Mantle Structure Beneath Volcanic Arcs

The most detailed images of seismological structure beneath volcanic arcs come from
body wave tomographic images obtained by dense regional networks or temporary
seismograph deployments overlying highly seismic intermediate depth slabs. Such
tomographic images have now been obtained for a wide variety of mantle wedge
regions with varying resolution, depending on the density of seismographs, level of
seismicity, and duration of the recording. Ideally, images of P and S velocity and
attenuation structure should be interpreted simultaneously because these measure-
ments provide different types of constraints and the use of all three structures can
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reduce the ambiguity in interpretation (Wiens & Smith 2003). In practice, S velocity
and attenuation images are usually less detailed than P images owing to the lower
number of phase arrivals in the former case and limited measurement precision in the
latter.

The highest resolution images of a volcanic arc have been obtained in Japan
(Figure 1) where there is a long history of recording with dense seismic arrays (Zhao
et al. 1992, 2007; Zhao & Hasegawa 1993; Nakajima et al. 2001). Images obtained in
other regions generally show similar features to the Japan images (Zhao et al. 1995,
1997; Myers et al. 1998; Graeber & Asch 1999; Gorbatov et al. 1999; Husen et al.
2003; Wagner et al. 2005; Barklage et al. 2006; Reyners 2006). Here we discuss typi-
cal features of arc tomographic images with particular reference to the well-resolved
Japanese arc; prominent differences between regions are noted. Mantle wedges con-
taining active backarc spreading centers constitute a special case and are expected to
show different dynamics and structure associated with basalt production and seafloor
spreading in the backarc; these are discussed in the next section.

Most well-resolved subduction systems with island arc volcanism show an inclined
low-velocity, high-attenuation region above the subducting slab extending from the
Moho to depths of ∼150 km (Figure 1). The slowest velocities in this region are
generally Vp = 7.4 km s−1 and Vs = 4.0 km s−1, giving a Vp/Vs ratio of 1.85. These
anomalies represent deviations of approximately –8% and –10% relative to standard
global average seismic models such as IASPEI91 (Kennett & Engdahl 1991). How-
ever, they are often plotted relative to regional velocity averages, which are slower
than global models, resulting in smaller percentage anomalies.

Seismic attenuation models for the mantle wedge have lower spatial resolution
than velocity models but also generally show high attenuation (low Q) in the same
region (Roth et al. 1999, Tsumura et al. 2000, Takanami et al. 2000, Schurr et al. 2003,
Stachnik et al. 2004, Pozgay et al. 2007b). Comparisons of attenuation values between
different regions and studies are complicated by various frequency bands used and
different ways of treating frequency dependence (Flanagan & Wiens 1998, Stachnik
et al. 2004). One approach is to normalize measurements made in narrower bands
assuming a frequency-independent Q to a reference frequency of 1 Hz (Stachnik
et al. 2004), using a frequency dependence exponent (α) of 0.26, consistent with
both laboratory experiments and seismological measurements in the mantle wedge
(Jackson et al. 2002, Flanagan & Wiens 1998, Shito et al. 2004). Using this approach,
most studies suggest a minimum Qp of approximately 100 for the upper mantle be-
neath an active volcanic arc.

Seismic images show higher velocities and lower attenuation in mantle wedge
regions that lack an active volcanic arc, suggesting that the extremely low velocities
and high attenuation found beneath volcanically active arcs are related to the pro-
cess of melt production in the wedge. Amagmatic portions of the Alaska subduction
zone are characterized by lower attenuation (Qp ∼ 250) compared with magmati-
cally robust subduction zones elsewhere (Stachnik et al. 2004), and the Vs and Vp/Vs

ratios of the Chilean subduction zone change dramatically between magmatic and
amagmatic sections (Wagner et al. 2005). In northeast Japan, there is a relation-
ship between the strongest upper mantle velocity anomalies and concentrations of
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Quaternary volcanoes, suggesting that arc volcano spacing is controlled by the spacing
of upper mantle melt production regions as delineated by tomography (Tamura et al.
2002).

2.3. Structure of Active Arc/Backarc Systems

Island arcs with active backarc spreading centers may be expected to show significant
structural differences from volcanic arcs without active backarcs. The magma produc-
tion rate needed to generate the oceanic crust at a fast-spreading backarc spreading
center, such as the Lau basin (Tonga), is more than an order of magnitude greater
than the magma production rate of a typical island arc, so the magmatic system for
backarc spreading must be much more vigorous. In addition, backarc spreading must
be part of a mantle flow pattern that has significant differences from that of a mantle
wedge without an active backarc (Ribe 1989, Conder et al. 2002).

Seismic imaging of backarc systems is problematic because they are largely covered
with water and thus do not have good distributions of permanent seismic stations. The
Lau backarc basin behind the Tonga trench is probably the best imaged arc-backarc
system owing to a large deployment of ocean-bottom seismographs (OBS) in 1994.
Tomographic images show a large, low-velocity region extending from the volcanic
arc to several hundred kilometers beyond the active Lau spreading center, suggesting
a broad zone of high temperatures in the upper mantle (Figure 2) (Conder & Wiens
2006, Zhao et al. 1997). Attenuation results, inverted in this paper from the Roth
et al. (1999) dataset, also show a broad region of extremely high attenuation in the
upper mantle (Figure 2). Comparison of different tomographic results suggests that
the seismic velocity and attenuation anomalies associated with backarc spreading are
larger in magnitude than those associated with arc volcanism. We might speculatively
attribute this to the larger melt production of backarc spreading systems.

Waveform inversion results, which provide more resolution on the depth depen-
dence of seismic velocity at the cost of lateral resolution, show that the minimum
velocity occurs at 70 km depth, consistent with the expected onset depth of primary
mid-ocean ridge basalt magma production (Shen & Forsyth 1995). Assuming that
the low-velocity and high-attenuation area denotes the magma production region,
the Lau tomography results suggest that melt production occurs over a wide geo-
graphical region within the upper 100 km of the mantle, consistent with results from
a large OBS experiment on the East Pacific Rise (Conder et al. 2002b, Hammond

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 2
P-wave (a), S-wave (b), and Qp (c) tomographic models for the Tonga-Lau subduction zone and
backarc basin from an ocean-bottom seismograph deployment. The P-wave and S-wave
models are from Conder & Wiens (2006) and are given as velocity anomalies relative to the
IASPEI91 velocity model (Kennett & Engdahl 1991). The Qp structure was determined by
reinverting the attenuation measurements of Roth et al. (1999) using ray paths calculated for
the above velocity model. The solutions are masked where the structures cannot be adequately
resolved. Circles denote earthquake hypocenter locations. CLSC denotes the position of the
Central Lau Spreading Center.
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Figure 3
(a) Isotropic shear wave velocity structure as a function of depth determined from regional
waveform inversion for each of the backarc regions (Wiens et al. 2006a). The isotropic
structure of 0–4 Ma Pacific ocean lithosphere from Nishimura & Forsyth (1989) is shown,
illustrating that the average mantle structure of backarc basins is similar to mid-ocean ridges.
(b) The average S velocity between 40–100 km depth and Na2O concentration in equilibrium
with Fo90 are plotted as a function of average ridge depth for active backarc basins (Wiens
et al. 2006a). Petrologic melting models suggest that Na(Fo90) concentrations are inversely
correlated with temperature. The Lau Basin shows low seismic velocities, high ridge
elevations, and low Na concentrations, which are all indicative of high upper mantle
temperatures. Conversely, the Mariana Trough shows higher seismic velocities, low ridge
elevations, and high Na concentrations, indicating cold upper mantle temperatures.

& Toomey 2003, Hung et al. 2000). This finding indicates that melt production at
fast-spreading ridges occurs within a mantle flow pattern dominated by passive
upwelling in response to plate motions (Scott & Stevenson 1989, Turcotte &
Morgan 1993) rather than narrow buoyancy-driven upwelling, whether at mid-ocean
or backarc locations.

Seismic and petrological evidence indicates mantle temperature variations on the
order of 100◦C between different mantle wedge regions (Wiens et al. 2006a). Seismic
waveform inversion results show large variations in seismic velocity between backarcs,
particularly at depths of 60–85 km (Figure 3a). At this depth, the Lau backarc shows
velocities approximately 7.5% lower than the Mariana backarc, with the North Fiji
and East Scotia backarcs being intermediate between these extremes. The upper
mantle seismic variations are correlated with spreading center elevation and basalt
major element systematics (Figure 3b). The Lau Basin shows unusually shallow axial
depths of approximately 2200 m, whereas the Mariana backarc shows anomalously
deep ridge axis depths of 3900 m and the North Fiji Basin and East Scotia backarcs
show intermediate depths. The major element systematics of backarc basin basalts,
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particularly their Na and Fe trends reflecting extent of melting, suggest that upper
mantle temperatures are consistently warmer in the Lau Basin than in the Mariana
Basin (Taylor & Martinez 2003). Wiens et al. (2006a) and Kelley et al. (2006) calculate
upper mantle potential temperatures for the Lau Basin that are ∼100◦C warmer
than the Mariana Basin, based on major element systematics corrected for water
content. To produce the large observed variation in ridge elevation, these temperature
differences must extend through approximately the upper 200 km of the mantle wedge
(Wiens et al. 2006a). These differences may reflect variations in the rate of backarc
spreading, slab rollback, and the vigor of mantle flow, as mantle flow models suggest
these factors may influence the temperature in the mantle wedge (Kincaid & Griffiths
2003).

2.4. Seismic Anisotropy and Constraints on Mantle Flow

Seismic anisotropy provides a possible constraint on the mantle flow pattern, as both
upper mantle xenolith observations (Christensen 1984, Mainprice & Silver 1993)
and laboratory experiments (Zhang & Karato 1995) show that shear strain associated
with flow preferentially aligns olivine and pyroxene crystals in mantle peridotite.
Most studies suggest that the fast direction will be aligned with the mantle flow
direction (Mainprice & Silver 1993), although other interpretations are possible (see
Section 3.2.2).

Seismological studies are generally not able to completely characterize upper man-
tle anisotropy. However, shear wave splitting observations of nearly vertically trav-
eling shear waves offers a convenient method of studying the azimuthal orientation
of subhorizontal fast and slow anisotropic axes in the upper mantle. Teleseismic SKS
splitting studies often yield results that are unable to localize the anisotropy to the
mantle wedge owing to the possibility of anisotropy below the slab, whereas local S
splitting studies from sources near the top of the slab alleviate this ambiguity. Small
magnitude splitting measurements may result from anisotropy in the crust, but many
arc and backarc regions show large splitting times (0.5–2 s) that are incompatible with
an origin in the relatively thin crust.

Shear wave splitting studies have now been carried out for most subduction zones
and some generalizations are possible. Most volcanic arcs are characterized by along-
strike fast shear wave splitting directions (Wiens & Smith 2003). Table 1 shows
the average fast axis orientation relative to subduction zone strike and the apparent
motion of the subducting plate for various arcs.

Several mantle wedge regions are characterized by a prominent rotation of the fast
direction of anisotropy from along-strike in the forearc or arc to arc-perpendicular
in the backarc (Figure 4). The Tonga-Fiji region shows along-strike fast directions
near the volcanic arc, which rotate to a north-south direction near the Lau backarc
spreading center and to convergence-parallel (approximately arc-perpendicular) in
the far backarc (Smith et al. 2001). These fast axis orientations, if interpreted as
indicating the direction of mantle flow, are consistent with geochemical inferences of
southward flow of Pacific mantle induced by slab rollback (Turner & Hawkesworth
1998, Pearce & Stern 2006). The Mariana arc shows along-strike fast directions in
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Table 1 Fast direction and approximate magnitude of shear wave splitting in the mantle wedge

Subduction zone Forearc Arc Backarc References∗

Aleutians Arc parallel, 0.1 s Arc parallel, 0.25 s (Yang et al. 1995)
Alaska APM parallel, 0.5 s Arc parallel, 0.75 s Arc parallel, 0.75 s D. Christensen,

personal
communication, 2007

Kamchatka APM parallel/Arc
perpendicular 0.5 s

APM parallel/Arc
perpendicular 0.5 s

Arc parallel, 0.6 s (Levin et al. 2004)

Hokkaido Arc parallel, 0.1 s Arc perpendicular, 0.3 s Arc perpendicular, 0.3 s (Nakajima et al. 2006)
Honshu Arc parallel, 0.1 s APM parallel/Arc

perpendicular 0.3 s
APM parallel/Arc
pependicular, 0.3 s

(Nakajima &
Haswagawa 2004)

Ryukyu Arc parallel, 1.0 s (Long & van der Hilst
2006)

Izu-Bonin Arc parallel, 1.2 s (Anglin & Fouch 2005)
Mariana Arc parallel, 0.5 s Arc parallel, 0.5 s APM parallel beyond

spreading center, 0.6 s
(Pozgay et al. 2007a)

Tonga Arc parallel Arc parallel, 1.5 s APM parallel/Arc
perpendicular beyond
spreading center, 1 s

(Smith et al. 2001)

Hikurangi
(New Zealand)

Arc parallel, 0.5 s Variable, 1 s Variable, 1 s (Audoine et al. 2004)

Cascadia APM parallel, 0.8 s APM parallel, 1.2 s APM parallel, 1.2 s (Currie et al. 2004)
Central America Arc parallel, 0.2 s Arc parallel, 0.5 s (Abt et al. 2006)
Chile Variable Slab contour parallel,

0.2 s
Slab contour parallel,
0.3 s

(Anderson et al. 2004)

∗Additional references given in Wiens & Smith (2003) and Lassak et al. (2006).
Absolute plate motion of the subducting plate (APM).

the forearc and arc, but fast directions also rotate to convergence parallel near the
backarc spreading center (Pozgay et al. 2007a). In the Japanese arc, this rotation occurs
between the forearc and volcanic arc, such that measurements beneath the volcanic
arc and backarc show arc-perpendicular orientations (Nakajima & Hasagawa 2004,
Long & Van der Hilst 2005, Nakajima et al. 2006).

3. INTERPRETATION OF SEISMIC RESULTS

3.1. Variables Affecting Seismic Velocity and Attenuation

As outlined above, seismic observations of subduction zones show large variations,
ranging from fast velocity and low attenuation in slabs to slow velocity and high
attenuation in the mantle wedge, with significant and variable seismic anisotropy.
Seismic observations can potentially be affected by a large range of variables, includ-
ing temperature, composition, volatile content, and the presence of small quantities
of melt or other fluids. Distinguishing between the effects of these parameters is
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Figure 4
Shear wave splitting observations showing the directions of the fast polarization axis for
near-vertically propagating S waves at three subduction zones. (a) The northeast Japan
subduction zone (Nakajima & Hasagawa 2004), (b) the central Mariana subduction zone
(Pozgay et al. 2007a), (c) the Tonga-Lau subduction zone (Smith et al. 2001). In all three cases,
along-strike fast directions predominate in the forearc. For the Japan case, the fast directions
rotate to arc-normal beneath the volcanic arc, whereas for the Mariana and Tonga cases, the
rotation occurs in the far backarc, beyond the backarc spreading center.
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essential if the seismic images are to provide quantitative constraints on geodynamic
processes. In this section, we review a range of conditions that will affect seismic prop-
erties, starting with thermally activated processes. In Section 3.3, the experimental
observations and theoretical models are compared to the seismic observations and
geodynamic models discussed in Section 3.2.

3.1.1. Thermally activated processes. At low temperatures the behavior of rocks
at seismic frequencies is purely elastic, with a linear decrease of the elastic moduli
with increasing temperature (anharmonic behavior). Elastic properties are most com-
monly determined by experiments at ultrasonic frequencies (e.g., Anderson & Isaak
1995, see also references in Schutt & Lesher 2006). In the elastic regime, the re-
sponse of a material to an imposed stress occurs instantaneously and without energy
loss (zero attenuation or infinite Q). At higher temperatures, rocks respond viscoelas-
tically to the imposed stress, where energy absorption (finite Q) and corresponding
dispersion (frequency dependence of wave velocities) become progressively more im-
portant (Berkhemer et al. 1982; Jackson et al. 1992, 2002; Gribb & Cooper 1998). For
olivine the transition from elastic to viscoelastic behavior occurs at about 950◦C at
seismic frequencies (Faul & Jackson 2005). Seismic attenuation increases rapidly with
temperature above 950◦C and anelastic velocity dispersion becomes more important
for interpreting seismic velocities at higher temperatures (e.g., Karato 1993).

Fits to subresonant (torsional) data, as well as microcreep experiments, confirm
that the observed strain consists of elastic (instantaneous and recoverable), anelastic
(transient and recoverable), and viscous (permanent time-dependent) contributions.
The experimental data can be fit by two alternative empirical models that account for
these three parts: the Andrade (e.g., Gribb & Cooper 1998) and Burgers models (e.g.,
Faul & Jackson 2005). The Burgers model has to be extended to produce a distribution
of relaxation times implicit in the seismically observed absorption band behavior
(Minster & Anderson 1981). The moduli measured on polycrystalline samples in the
viscoelastic regime at seismic frequencies (1–1000 s) are strongly and nonlinearly
temperature as well as grain-size dependent (Figure 5) ( Jackson et al. 2002, Faul &
Jackson 2005).

A number of physical processes can give rise to recoverable, but time- and
temperature-dependent (anelastic) strains imposed by the seismic wave field: the mo-
tion of point defects, line defects (dislocations), and planar defects (grain boundaries,
twins). Models of point defects indicate that the anelastic relaxation occurs at much
higher frequencies than the seismic band (i.e., point defects do not contribute to seis-
mically observed attenuation), and the associated modulus reduction is small (Karato
& Spetzler 1990).

Hydrogen-related defects are an exception, as water in nominally anhydrous min-
erals can have a large effect on seismic velocities and attenuation (Karato 2003, Shito
et al. 2006). Water (hydrogen) does not affect the anharmonic moduli, but may en-
hance processes that are also temperature dependent, such as dislocation climb and
grain boundary sliding. The influence of water on anelastic behavior is inferred from
its effect on viscous behavior determined by conventional deformation experiments
(e.g., Mei & Kohlstedt 2000a,b).
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Figure 5
(a) P-wave (blue) and S-wave (red ) velocity temperature derivatives as a function of temperature
for periods of 1 and 100 s and grain sizes of 1 and 10 mm at 100 km depth. Solid lines denote
10 mm grain size, dashed lines denote 1 mm grain size, and dotted lines denote anharmonic
results that are independent of grain size. The shear modulus is calculated from the fit of Faul
& Jackson (2005) to the experimental data of Jackson et al. (2002, 2004). Anharmonic values
and derivatives for bulk and shear modulus are taken from Bass (1995). These calculations
assume that there is no viscoelastic relaxation of the bulk modulus (no bulk attenuation).
Temperature derivatives accounting for viscoelastic behavior of the shear modulus are
nonlinear and are substantially larger at high temperatures than the anharmonic velocity
derivatives. (b) The logarithmic ratio dlnVs/dlnVp as a function of temperature for a grain size
of 10 mm and periods of 1 s and 100 s, using the same methods as panel a. The ratio is
calculated from dlnVs/dlnVp = (Vp/Vs)[(dVs/dT)/(dVp/dT )], where Vi are the anharmonic
velocities at temperature T and dVi/dT are the temperature derivatives at temperature T from
panel a (see Karato 1993). These calculations show that logarithmic ratios as high as 2 can
result from temperature effects alone (cf. Section 2.1).

Mantle anisotropy is generally associated with deformation by dislocation creep,
indicating that dislocations have the potential to affect the seismic properties. Micro-
physical models of dislocation damping show that the shear modulus decrease due to
interaction of dislocations with the seismic wavefield may be large (Karato & Spetzler
1991, Jackson 2007). However, a number of conditions have to be met regarding acti-
vation energy, dislocation segment length distributions, and densities to produce the
seismologically observed absorption band behavior. In the only experimental study
to date, Gueguen et al. (1989) observed a significant increase in attenuation from un-
deformed to predeformed single crystals of olivine, but the results are not conclusive.

Grain sizes in the upper mantle are estimated to lie in the millimeter to centimeter
range, implying that grain boundaries are a ubiquitous defect. Grain boundaries are
assumed to have significantly lower viscosities than grain interiors (e.g., Raj & Ashby
1971; see also Section 3.1.3), an assumption that is also made in the description
of diffusional creep accommodated by grain boundary sliding (Poirier 1985, Hirth
& Kohlstedt 1995). High-resolution images of polycrystalline olivine show grain
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boundary regions of approximately 1 nm or less in width that do not have olivine
structure and are enriched in trace elements relative to grain interiors (e.g., Drury &
FitzGerald 1998, Hiraga et al. 2003, Faul et al. 2004).

Diffusionally accommodated grain boundary sliding involves a monotonic distri-
bution of relaxation times. This distribution of thermally activated relaxation times
provides a natural explanation for the “high temperature background” or absorption
band behavior. As indicated in Section 2.2, the experimentally determined frequency
dependence of attenuation associated with this process, Q ∼ (ωd )α where ω is the
frequency, d grain size, and α ≈ 0.26 (Jackson et al. 2002) is consistent with the seis-
mologically determined frequency dependence. The temperature derivatives of the
velocity in Figure 5 include the corresponding frequency and grain-size dependence
of the shear modulus. At high temperatures velocity derivatives including anelasticity
are twice as large as anharmonic derivatives at body wave frequencies and a grain size
of 10 mm. At the same conditions, the Vp/Vs ratio can exceed 1.8.

In summary, temperature is expected to have a significant effect on seismic ve-
locities and attenuation via processes such as grain boundary sliding and dislo-
cation damping. The temperature effects become progressively more prominent
as temperature increases, and are not well approximated by linear temperature
derivatives often assumed in the seismological literature (Figure 5). Because of
the expected large temperature differences between subducting lithosphere and
mantle wedge, the contribution of temperature to observed velocities should be
accounted for first to identify contributions from other factors such as melt or
water.

3.1.2. Composition. Variations in seismic velocities owing to compositional changes
in upper mantle rocks can result from changes in either the composition of constituent
minerals (for example, the Fe content of olivine) or changes in mode (changes in
the proportion of the constituent minerals in a rock). Two different processes can
result in compositional changes: partial melting and melt extraction, or metasomatic
infiltration of a host rock by melts of fluids.

Jordan (1979) and Schutt & Lesher (2006) examined the effects of progressive
depletion on seismic velocities and densities by melt extraction from a model fer-
tile mantle composition. Melt extraction depletes principally the low melting point
components such as Fe and Al. As a result, olivine and pyroxenes become more mag-
nesian and, hence, less dense and seismically faster. A decrease in Al content of the
bulk rock results in a decrease of the proportion of garnet (or spinel at pressures
below 2-3 GPa), which again reduces the density of the bulk rock. However, because
garnet has faster seismic velocities than olivine and pyroxenes, a decreasing garnet
mode decreases bulk rock seismic velocities. Metasomatized xenoliths show a wider
range in composition (Lee 2003), but for the full range in Mg# (from 89 to 93) the
range in shear velocities is approximately 0.1 km s−1 at standard pressure and tem-
perature. Compared to temperature variation or the presence of melt, which give rise
to viscoelastic behavior, compositional variations of a (dry) peridotitic upper mantle
at temperatures above about 1000◦C will be difficult to detect in a subduction zone
setting.
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For ultramafic compositions in the upper mantle, only two minerals are poten-
tially abundant enough to lower velocities by more than 0.1 km s−1: plagioclase and
amphibole. From calculations by Stixrude & Lithgow-Bertelloni (2005), the presence
of plagioclase may in part explain the observations of a near constant velocity lid for
oceanic lithosphere by reducing the shear velocity in the upper 20–30 km (the stability
limit of plagioclase). Amphibole is significantly slower than dry peridotite minerals
(Hacker et al. 2003). The stability of (pargasitic) amphibole in a peridotitic compo-
sition is restricted to pressures below 3 GPa and temperatures below 1000◦C (e.g.,
Niida & Green 1999). Thus amphibole can produce significantly lower velocities but
only in the shallower (<100 km) and cooler parts of the mantle wedge.

Serpentinization of the forearc mantle is often invoked to explain the disappear-
ance of the seismic Moho in subduction settings (e.g., Hyndman & Peacock 2003;
see Sections 2.1 and 3.2.1). Using the data compiled by Hacker et al. (2003), for ser-
pentinized harzburgite to have similar velocities (and densities) as (anhydrous) mafic
lower crustal lithologies, the degree of serpentinization needs to be close to 30%.
Because of the low shear modulus relative to the bulk modulus of serpentine (antig-
orite), a diagnostic feature of serpentinized harzburgite in seismic images is a large
Vp/Vs ratio.

3.1.3. Melt and fluids. Melt and fluid, ranging in composition from volatile-free
silicate melt to nearly pure H2O/CO2 fluids, have a lower bulk modulus than crys-
talline solids (e.g., Rivers & Carmichael 1987) and no elastic resistance to shear. Their
distribution in the solid matrix is controlled by surface energy such that even for a
small proportion they are optimally dispersed among crystalline grains to impact
bulk properties [i.e., for a dihedral angle (θ) with 0 < θ < 60◦, fluid occurs at every
three-grain edge intersection]. Small amounts of melt or fluid can therefore have a
large effect on seismic velocities and attenuation.

Two different theoretical methods, the self-consistent scheme and poroelastic the-
ory, are commonly used to determine the effect of a distributed weaker phase on the
bulk properties of rocks. In the self-consistent scheme, the effect of a pore with a
specified geometry is determined by replacing the elastic moduli of the pore-free
medium with effective elastic moduli that account for the mechanical interaction of
the pores (e.g., O’Connell & Budiansky 1974, 1977; Mavko 1980; Schmeling 1985).
Pore shapes are approximated by prescribed geometries such as circular cracks or
ellipsoids (O’Connell & Budiansky 1974, 1977; Schmeling 1985) or tubules (Mavko
1980). Poroelastic theory is based on a continuum mechanical approach for two-phase
media to determine the elastic properties of a matrix skeleton where the pore fluid
is replaced by a vacuum (e.g., Biot 1956; Takei 1998, 2002; Berryman 2000). Local
heterogeneities in the pore space or viscous shear within the fluid are not considered
in this approach (Schmeling 1985).

In the poroelastic approach developed by Takei (1998, 2002), the proportion of
grain to grain contact area (contiguity) of a porous skeleton determines the me-
chanical properties of the composite. Depending on the method, modulus reduc-
tion and attenuation are then calculated as a function of crack density, porosity, or
contiguity.
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The self-consistent scheme describes three distinct processes resulting in mod-
ulus reduction and attenuation (O’Connell & Budiansky 1977). On application of
a macroscopic stress, shear stress relaxation in the fluid or melt within individual
inclusions (e.g., between opposite faces of a sheared inclusion) occurs first. This pro-
cess is equivalent to elastically accommodated grain boundary sliding (discussed in
Section 3.1.1). Second, flow within or between connected inclusions with different
orientations to the applied stress takes place, and third, if the fluid is interconnected,
bulk fluid flow can occur. Completion of the first two processes results in shear
modulus reduction relative to a melt-free aggregate, but the bulk modulus remains
unaffected. Completion of the third process results in bulk modulus reduction, but
the shear modulus is unaffected (O’Connell & Budiansky 1977).

Seismic attenuation only occurs if the relaxation timescale of a particular process,
i.e., the transition from unrelaxed (at higher frequencies) to relaxed modulus (at lower
frequencies), falls in the seismic frequency band. For upper mantle fluids and melts,
the relaxation due to the first process takes place at much higher frequencies than
the seismic band and therefore no attenuation is observable at seismic frequencies
(O’Connell & Budiansky 1977, Mavko 1980). Similarly, relaxation via the second
mechanism [termed melt squirt by Mavko & Nur (1975)] is also estimated to take
place at frequencies higher than seismic frequencies (Hammond & Humphries 2000,
Faul et al. 2004). Completion of both processes results in a reduced shear modulus
in the seismic band relative to melt-free mantle, or in other words, a reduction of
seismic velocity with no corresponding increase in seismic attenuation.

The relaxation timescale of the third mechanism, bulk fluid flow, is less clear.
Renner et al. (2003) inferred that the basaltic melt compaction rate is limited by
the flow of melt out of the sample at experimental durations of 6 h. Gribb et al.
(1994, see also Cooper 2003) inferred that transient (anelastic) behavior observed in
four-point-bending experiments was at least partially due to bulk melt flow across the
specimen. The timescale of the observed transients was of the order of tens of seconds
to hours. Extrapolation to partially molten regions in the mantle requires extrapola-
tion of the experimentally observed behavior to mantle grain sizes and the pressure
gradients of the seismic wavefield. Significantly, poroelastic theory explicitly assumes
that relaxation by bulk fluid flow has taken place (e.g., Takei 1998, 2000, 2002).

Experimental observations on partially molten olivine within the seismic frequency
band show an attenuation peak owing to melt, superposed on a monotonic back-
ground similar to melt-free samples ( Jackson et al. 2004). These observations can
most easily be reconciled by inferring grain boundary sliding as the mechanism re-
sponsible for modulus reduction and attenuation (Faul et al. 2004). If this mechanism
has been correctly identified, the theoretical treatments of Raj & Ashby (1971) and
O’Connell & Budiansky (1977) imply that the grain boundary viscosity is interme-
diate between that of bulk melt and olivine grain interiors. Velocity reduction and
attenuation in melt-free samples is due to diffusionally accommodated grain boundary
sliding, and the attenuation peak in the melt-bearing results is consistent with elas-
tically accommodated grain boundary sliding, implying grain boundary viscosities in
the range of 104–109 Pa s. Extrapolation of the experimental results to mantle grain
sizes indicates that the broad attenuation peak falls in the seismic frequency range
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for upper mantle temperatures and grain sizes (Faul et al. 2004). This could lead
to variable frequency dependence if a broad enough frequency range is investigated
and in situ melt fractions are high enough. The attenuation peak within the seismic
band results in large attenuation for relatively small (∼0.1%) porosity, suggesting
that attenuation will be highly sensitive to even small melt fractions (Faul & Jackson
2004).

In summary, theoretical treatments as well as experimental observations predict
that melt will significantly reduce seismic velocities (depending on melt fraction and
pore geometry), whereas only the experimental observations suggest observable melt-
related attenuation. However, quantification of melt porosity in the mantle by seismic
observations remains difficult at this time.

3.2. Insights from Geodynamical Modeling

Many geological processes occurring in the mantle wedge have been examined
through geodynamic models, including the evolving thermal structure, melt gen-
eration and transport behaviors, and mantle flow patterns. In a typical model for-
mulation, the downgoing slab, overriding plate, and mantle wedge asthenosphere are
usually explicitly defined, whereas the forearc, arc, and backarc must be inferred from
the model results.

3.2.1. Cold forearc wedge/decoupling zone. Despite being relatively cold and
amagmatic, the forearc plays a crucial role in arc evolution. As the forearc is the
portion of the overlying plate that is directly on top of the subducting slab and
close to the trench, the forearc experiences high stresses (Kneller et al. 2005), can
be significantly hydrated and serpentinized (Fryer et al. 1995, Hyndman & Peacock
2003), and is susceptible to internal deformation and faulting. Forearc deformation
occurs at dramatically different P-T (and rheological) conditions and at much slower
strain rates than in the rest of the mantle wedge, so geodynamic models are rarely
designed to simultaneously address wedge flow and forearc deformation. Because
corner flow is driven by the viscous coupling between slab and overlying man-
tle, the fault zone parameterization affects the mode of coupling and flow pattern
in the uppermost wedge. Thus, exactly how the viscous decoupling is achieved along
the fault zone separating the downgoing slab from the overriding forearc can be cru-
cial to the results of the model. Fault zone dimensions may be set to some a priori
depth or can be defined by some other criterion, such as yield strength (Zhong &
Gurnis 1995, Conder 2005). Computer codes that can realistically handle rapidly
varying viscoelastic-plastic rheologies will help address the coupling and simulta-
neous deformation within the forearc corner and asthenospheric wedge (Hall et al.
2003), but they remain computationally expensive.

For wedge models focused on asthenosphere dynamics, the few strong constraints
on the proper fault zone dimensions for viscous flow models and subsequent forearc
development are mentioned above in Section 2.1, including the transition from low
to high heatflow and seismic attenuation from the forearc to toward the arc. These
constraints point to a decoupling depth between 60–80 km (Conder 2005, Furukawa
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1993) and a forearc-asthenosphere boundary that is fairly abrupt, vertical, and a few
tens of kilometers oceanward of the volcanic front. This depth is greater than the
maximum depth of thrust seismicity for most arcs (Tichelaar & Ruff 1993), but the
lower part of the decoupling zone may fail during slow slip events that have been
detected both geodetically and seismically (e.g., Rogers & Dragert 2003, Ito et al.
2007). A useful rule for viscous flow thermal models is that the deeper the viscously
decoupled fault zone extends, the less viscous erosion of the upper plate and the
warmer slab surface temperatures become by sequestering more cold material in the
forearc corner, restricting the amount of possible cold material creating a cool thermal
blanket atop the slab. Consequently, the depth of the forearc corner controls the depth
of viscous coupling, which controls asthenospheric penetration and flow in the corner,
affecting slab heating and melt processes in the wedge corner (Conder 2005).

3.2.2. Asthenospheric flow. Mantle flow in the wedge has important implications
for the thermal structure, arc melting processes and general mantle circulation. The
majority of mantle wedge flow models in the literature assume a 2D corner flow
structure within the wedge for a variety of reasons. Two-dimensional models are
simpler to construct and interpret, and unless there is specific interest in slab edges
or tears, a case may be made that near the center of slabs most processes should be
largely 2D. However, there is some evidence that 3D mantle flow may be common
beneath arcs, and should be considered in interpretation of the spectrum of geological
and geophysical observations.

As described above in Section 2.4, mantle minerals are anisotropic and align them-
selves in the presence of a strain field (Mainprice & Silver 1993), so observations of
seismic anisotropy provide important constraints on mantle flow in the wedge. Ob-
served patterns need to be interpreted cautiously, as mineral textures may develop
with differing fast axis orientations relative to the flow direction as a result of melt
band formation (Holtzman et al. 2003) or under conditions of hydration and high
stress ( Jung & Karato 2001, Katayama & Karato 2006). The forearc is likely a region
of low temperatures, high water content, and high stress and may be dominated by
B-type fabric, which exhibits seismic fast directions normal to the maximum exten-
sion direction, whereas the wedge asthenosphere supports mineral fabrics which give
seismic fast directions orientated in the flow direction for vertically traveling S-waves
(Kneller et al. 2005, Katayama & Karato 2006).

Fast splitting orientations in the Lau and Mariana mantle wedges are arc-parallel in
the forearc and beneath the arc, but rotate toward arc-perpendicular (or parallel to the
apparent plate motion of the subducting plate) further into the backarc (Smith et al.
2001, Pozgay et al. 2007a) (Figure 4 and Table 1). In neither case are the observations
consistent with simple 2D slab-driven flow as is assumed in many geodynamic models
(e.g., Ribe 1989, Fischer et al. 2000, Conder 2002) and instead imply more complex
patterns of mantle flow. Geodynamic models using analog materials demonstrate that
flow around the ends of slabs and along-strike in the mantle wedge can dominate sys-
tems characterized by slab rollback (Buttles & Olson 1998, Kincaid & Griffiths 2003).

Recent advances in 2.5-dimensional (2.5D) and 3D numerical modeling are help-
ing to address the causes and effects of along-axis flow (Conder et al. 2006, Kneller

438 Wiens · Conder · Faul

A
nn

u.
 R

ev
. E

ar
th

 P
la

ne
t. 

Sc
i. 

20
08

.3
6:

42
1-

45
5.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 7
5.

13
0.

21
1.

14
6 

on
 0

5/
14

/0
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV341-EA36-14 ARI 25 March 2008 1:7

& van Keken 2006). While 3D modeling is required to fully integrate all the inter-
related dynamics, 2.5D flow models (flow is allowed in the along-arc direction, but
with no variation) can be used for looking at specific processes required for the devel-
opment of seismic anisotropy by lattice-preferred orientation (LPO) of anisotropic
mantle minerals in the presence of along-arc flow. For example, taking a 2D ther-
mal model with non-Newtonian rheology and calculating the flow and strain rates in
the along-strike direction under an applied along-strike pressure gradient, one finds
along-strike flow velocities are greatest beneath the arc, resulting in high strain rate
localizations at the base of the overlying plate beneath the arc and backarc, and atop
the inclined slab (Pozgay et al. 2007a). It is likely that observed shear wave splitting
patterns would be dominated by the signatures of these loci of high stain rates in
wedge systems with a high degree of arc-parallel mantle flow. Similarly, 2.5D flow
models coupled with LPO development under strain (Kaminski et al. 2004) patterned
after the Lau Basin, suggest that mantle velocities several times the plate velocities
and confined to a low-viscosity subarc channel (Billen & Gurnis 2001) are required to
explain the observed shear wave splitting pattern (Figure 6) (Conder & Wiens 2007).

Even barring along-strike flow, simple 2D corner flow may not adequately describe
mantle flow within the wedge. The complete role of gravitational instabilities in the
wedge is difficult to constrain, but may be key to a number of important aspects
of wedge dynamics. Buoyant diapirism could play crucial roles in fluid and melt
transport, possibly controlling ascent times, distribution throughout the wedge, and
location of the volcanic front (Gerya et al. 2004, Hall & Kincaid 2001). Hot fingers
in the wedge beneath Japan suggest that small-scale convection may strongly affect
wedge corner structure and volcano distribution (Tamura et al. 2002, Nakajima et al.
2001). The negatively buoyant instabilities from the base of the overlying plate driving
small-scale convection are likely time dependent and may control the migration of
active volcanism across the arc (Honda et al. 2002).

3.2.3. Melt generation. Melt generation has been a focus of geodynamic subduction
models nearly since the inception of plate tectonics. Melting beneath arcs can result
from several possible processes: hydration (flux) melting of the wedge from the release
of slab fluids (Tatsumi 1989), decompression melting of the wedge due to upwelling
flow (Conder et al. 2002), or melting of the downgoing sediments and/or basaltic crust
(Hsui et al. 1983). More than one mechanism may occur simultaneously beneath any
particular arc (Figure 7). Flux melting is widely viewed as the primary mechanism of
arc magmagenesis (e.g., Iwamori, 1998, van Keken 2003), but because of complexities
in fluid release, migration, and solid-fluid interaction, quantitative models of the
system including processes from slab fluid release to fluid migration and subsequent
melting are few. Slab melting is a simpler process but has often been discounted
at arcs except in unusual tectonic settings, largely because some thermal models
showed that the slab crust is likely to be too cold to melt within the depth range
required to generate arc volcanoes (Davies & Stevenson 1992, Peacock et al. 1994).
However, geochemical studies suggest a signature of slab sediments in arc magmas
( Johnson & Plank 1999) and recent modeling results using temperature-dependent
viscosity suggest the possibility that slab melting contributes a volumetrically small
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Figure 6
Three-dimensional flow may be an essential aspect of arc dynamics. Top panel shows stacked
shear wave splitting results of Smith et al. (2001) for the Lau Basin from local S phases. Bars
denote seismic fast directions with lengths scaled to splitting times. The shear wave splitting
observations are likely controlled by mantle flow patterns. Bottom panel shows predicted shear
wave splitting for vertically traveling waves through the wedge using 2.5D wedge flow
modeling that includes both corner flow and along-strike flow while tracking LPO
development. A model with channelized flow along the arc likely induced from slab rollback
results in fast directions controlled by corner flow in the backarc, and along-strike flow beneath
the arc, producing a good match to the observed splitting data (Conder & Wiens 2007).
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Figure 7
Melting at volcanic arcs can be induced through three possible mechanisms: fluxing of the
wedge from hydrous fluids, decompression melting with lithospheric ablation, and melting of
the top of the slab at depth. The expected regions of decompression, flux, and slab/sediment
melting ( gray fields) are shown as determined using the idealized arc flow model of Conder
(2005) (slab dip of 45, subduction rate of 6 cm year−1, temperature-dependent viscosity) and
including the hydration saturation and wet solidus parameterization of Katz (2002). VF
denotes the volcanic front, assumed to be where the slab reaches 100 km depth, and colors
denote temperatures calculated in the flow model.

but geochemically significant component to arc magmatism (Kelemen et al. 2003,
Conder 2005).

Despite petrological and geochemical evidences of anhydrous melting of the
wedge at arcs (Cameron et al. 2003, Elkins-Tanton et al. 2001, Sisson & Bronto 1998),
decompression melting has often been overlooked because significant upwelling only
occurs in models that explicitly include a realistic temperature-dependent viscosity
(Furukawa 1993, Eberle et al. 2002, Conder et al. 2002). Each melting mechanism
exhibits a different spatial pattern of melt generation, suggesting the prospect of
distinguishing between the probable melting processes at arcs through geophysical
imaging (Figure 7). However, there are a number of poorly understood processes
and conditions that will make interpretation difficult using geophysical imaging alone.
Seismic anomalies depend on temperature, composition, and the presence of melt and
fluids (Wiens et al. 2006b; see also Section 3.1). So, the geophysical anomalies will
depend strongly on the migration patterns of melt and fluids in conjunction with pore
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geometry, which are presently not well constrained. Such ambiguity demonstrates the
importance of building a consistent model using geochemistry, geophysical imaging,
and geodynamical modeling.

3.2.4. Fluid/melt migration. Although it is well understood that the slab releases
volatiles into the mantle wedge, there is some uncertainty as to the most crucial
dehydration reactions and transport mechanisms governing the process (van Keken
2003). The governing reactions could vary between different arcs as they are functions
of T, P, and mineral content and composition. Models of punctuated pulses of fluid
release associated with pressure-dependent dehydration reactions (Tatsumi 1989) are
attractive in that they easily explain the location and narrow width of the volcanic
zone. However, models of slab dehydration occurring over an extended depth range
fit laboratory constraints better (Ono 1998, Schmidt & Poli 1998), and require some
lateral migration, in addition to buoyancy, for fluids and/or melts.

The ability of fluids and melt to migrate by porous flow depends on interconnec-
tion and geometry of the pore space. Although silicate melts are interconnected at
all melt fractions [dihedral angle <60◦ (Waff & Bulau 1979)], water and CO2-rich
fluids only become interconnected at small porosity for high enough pressures (Mibe
et al. 1999), at which the miscibility gap between hydrous fluids and silicate melts
closes (Bureau & Kepler 1999). For interconnected fluids and melts, the permeability
k is commonly calculated from k = d 2 �n / C, where d is the channel spacing (grain
size), f is porosity with exponent n, and C a constant. From analogue permeability
measurements of Wark & Watson (1998, see also Liang et al. 2001), n = 3 and
C = 270. Owing to their much lower viscosity and lower density relative to silicate
melts, aqueous fluids can migrate at much lower porosity (Faul 2001). Cagnioncle
et al. (2007) show that for a likely range of reasonable mantle permeabilities, the
grain size must be ≥1 mm to allow fluids to rise fast enough to escape being carried
to depth in the corner flow circulation.

Seismic imaging is most sensitive to porosity, but pore geometry is also important
(see Section 3.1.3). Owing to the greater mobility and hence lower porosity of fluids
relative to silicate melts, the latter may be easier to detect. Because permeability
depends on porosity (see equation above), constraints on porosity would indirectly
also provide constraints on permeability if the grain size is known.

Some alternative mechanisms have been hypothesized that do not rely on fast
porous flow, such as hydrofracture within the wedge (Davies 1999) and the develop-
ment of buoyant, cold, wet, diapirs (Gerya et al. 2004). Regardless of the mechanism
for fluid transport in the wedge, some fluids must be transported rapidly into the cor-
ner to generate melting. As melting depends on the potential of water to react with
the solid matrix, the assumption of rapid water transport in the wedge may be used
to explore the likely region of hydration melting in the wedge. For example, using
a saturation formulation for olivine (Katz 2002) the potential solubility of water for
an idealized thermal flow model and resultant region of hydration melting can be
calculated (Figure 7), with the caveat that slower transport will restrict melting to
regions closer to the slab.
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Figure 8
Temperature model calculated with methods described in Figure 7, using a convergence
velocity and plate age appropriate for the Tonga subduction zone and including a backarc
spreading center. An adiabatic temperature gradient with a potential temperature of 1350◦C is
included. This thermal model was used to calculate the seismic velocity and attenuation
models in Figure 9.

3.3. Comparison to Observed Seismic Structure

The experimentally measured seismic properties of polycrystalline olivine enable for-
ward modeling of seismic velocities and attenuation for temperature fields generated
by geodynamical models (Figure 8). This process should allow testing and validation
of geodynamical models with seismic data. Here we illustrate this procedure for the
P, S, and Q tomographic results obtained for the Tonga arc and Lau backarc basin in
Section 2 and the geodynamical models incorporating backarc spreading shown in
Section 3.2.

The geodynamic model assumes an adiabatic gradient with a 1350◦C potential
temperature. Grain sizes in the seismic property calculations are fixed by compar-
ison with a 1D average Pacific velocity structure (Gaherty et al. 1996, Nishimura
& Forsyth 1989; see Faul & Jackson 2005). We calculate velocities and attenuation
at a frequency of 1 Hz, which is the dominant frequency of the seismic observa-
tions (Conder & Wiens 2006). This procedure accounts for thermally activated pro-
cesses except dislocations, which are experimentally unconstrained at this time (see
Section 3.1.1).

In the resulting 2D velocity model, the upwelling owing to backarc spreading
results in a shallow velocity minimum beneath the spreading center (Figure 9). In the
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Figure 9
Forward modeling of seismic velocity and attenuation. Left side of the figure shows modeled
P-wave velocity (a), S-wave velocity (b), and Qs (c), using relationships given in Faul & Jackson
(2005) and the temperature model shown in Figure 8. Right side shows observed tomographic
velocity models for the Tonga subduction zone from Conder & Wiens (2006) and Qs model
reprocessed from Roth et al. (1999). The velocity reduction and attenuation is greater than
predicted by temperature alone at depths of less than 150 km in a broad region of the Lau
backarc, suggesting the additional effects of partial melt and fluids in the mantle.

slab, temperatures are generally below 900◦C so that only anharmonic temperature
derivatives apply. Comparison with the tomographic model of Conder & Wiens
(2006) (Figure 2) shows that the seismically observed velocities in the wedge below
approximately 200 km depth are fairly similar to the forward calculated velocities.
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Above this depth, the observed velocities are significantly lower than the calculated
velocities (up to 8% lower in both Vp and Vs) and extend several hundred km laterally
in front of the slab. Similarly, Q is substantially lower than expected. Because the
velocities below 200 km depth are well matched by the forward calculations, the low
velocities above this depth do not reflect a generally hotter upper mantle adiabat. If the
low velocities in the shallow upper mantle are at least in part due to high temperature,
as implied by Wiens et al. (2006a), this requires a lateral inflow of mantle with elevated
temperatures at this depth.

Both Vp and Vs, as well as Q, are so low that thermally activated processes alone are
unlikely as an explanation for the anomaly, even if the temperature of the Lau upper
mantle is greater than the average mantle. The release of water from the downgoing
slab into the overlying mantle wedge suggests that water also contributes, both as
defect and fluid phase, although the anomaly in Figures 2 and 9 extends too far
from the slab to be directly due to water released from the slab because basalts of
the Central Lau Spreading Center do not show elevated water contents (Kelley et al.
2006).

In terms of the processes discussed in the previous sections, a combination of free
fluid and melt is likely required to explain the anomalous seismic properties observed
beneath the Lau basin. Observed Q is lower than expected from temperature effects
alone, implying that the timescale of the relaxation process falls in the frequency
range of the seismic observations. Although poroelastic theory may explain the low
velocities, the implicit assumption of relaxation at frequencies above those used for
the seismic observations means that it cannot explain the observed low Q. Similarly,
invoking melt squirt to explain both low velocities and Q would imply either high
melt viscosity or unexpectedly low aspect ratio melt inclusions, which in each case
is contrary to experimental results. A process like elastically accommodated grain
boundary sliding, inferred to explain the experimental observations of Jackson et al.
(2004) and Faul et al. (2004), can explain both the observed Q and Vs anomalies. It is
difficult to definitively infer mantle porosity from seismic observables at the present
time (see Section 3.1.3), but the experimental results of Faul et al. (2004) provide a
relationship between seismic attenuation and melt fraction. Interpreting Figure 9
in terms of experimental relationships suggests that melt-free portions of the upper
mantle should have Qs ∼ 75 at a depth of 65 km, whereas the lowest observed Q
beneath the backarc is Qs ∼ 20. This corresponds to a melt porosity of approximately
0.1% using the results of Faul et al. (2004). Of course, the attenuation image has
rather low resolution, so this does not rule out regions of higher melt porosity that
are spatially too small to be resolved seismically.

Because Vp is a function of both the bulk and shear modulus, the anomalies in
Vp should be milder than the anomalies in Vs if only the shear modulus is affected
by anelastic processes. The seismic models from Tonga/Lau show Vp anomalies as
pronounced as Vs anomalies, and the attenuation model of Roth et al. (1999) suggests
a Qp/Qs ratio of 1.7, which is significantly different from the ratio of 2.4 predicted if
attenuation is associated entirely with the shear modulus. This suggests that the bulk
modulus is also affected by anelastic processes. Only one possible mechanism—bulk
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fluid flow—is discussed above, although the applicability of this process remains un-
certain. Inasmuch as many arc/backarc systems show substantially reduced velocities
compared with global averages with simultaneous low Q (see Sections 2.2 and 2.3),
similar conclusions apply.

4. CONCLUDING REMARKS

Seismic imaging methods that determine the P, S, and Q structure, as well as the
anisotropic characteristics of the mantle wedge provide powerful insight into pro-
cesses in the forearc, arc, and backarc. Relationships between seismic parameters
and geodynamic variables such as temperature and melt content are essential for
understanding the implications of the seismic observations. Experimentally derived
relationships between temperature, grain size, and seismic velocity and attenuation
allow us to compare geodynamic models directly with seismic observations. These re-
sults show that the observed seismic structures cannot result solely from temperature
variations, and that substantial seismic anomalies are associated with melt-producing
regions in the upper mantle.

This work is still in its beginning stages, as significant advances on all three fronts
(seismology, rock physics, and geodynamics) will be necessary before we can quan-
titatively understand mantle wedge processes in detail and constrain key questions
such as mantle melt porosity and the timescale of melt migration. For seismology,
more detailed and higher resolution seismic models are needed. In particular, higher
resolution attenuation models as well as measurements of the Qp/Qs ratio and the fre-
quency dependence of attenuation, although difficult to make seismologically, will be
extremely helpful in constraining the physical state of mantle materials. Detailed
mapping of seismic anisotropy, including its depth dependence, is also desirable
given the spatial complexity of anisotropy in the mantle wedge. Quantitative in-
terpretation of seismic results in terms of melt porosity and water content will also
require significantly better experimental constraints on their seismic effects. Finally,
the application of truly 3D geodynamic models of the mantle wedge will be neces-
sary to fully understand the complexity of mantle flow and other dynamic processes
in subduction zones. We expect that substantial progress on all of these fronts in
the next few years may revolutionize our understanding of processes in the mantle
wedge.
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