ELSC Project Summary
Two fundamental questions posed in the RIDGE2000 (R2K) Science plan deal with melt
formation and transport, and its relationship to mantle flow patterns and composition. The Eastern Lau
Spreading Center (ELSC) was selected as a R2K ISS site in large part because of its tremendous along-
strike variation in geochemistry, petrology, spreading rate, crustal structure, and morphology. Because of
this variation, as well as the presence of slab earthquakes to function as a source array, the ELSC
represents the optimum location for an experiment to study the relationship between mantle melt
production, mantle flow and spreading center processes. We propose a combined active and passive
seismic experiment along the Eastern Lau Spreading Center (ELSC) to test the following previously
proposed hypotheses:
1. Circulation in the mantle wedge is dominated by slab driven flow.
TEST: comparison of seismic anisotropy results to predictions of slab driven and other flow models
2. Interaction of the arc and backarc magma production regions controls the character of the
ridge by influencing melt flux, petrology, and geochemistry.
TEST: the along-strike pattern of spatial separation between arc and spreading center melt production
zones as determined by P, S, surface wave, and attenuation tomography
3. Variations in the mantle melt supply control ridge crest features such as morphology, thermal
structure, and hydrothermal venting.
TEST: the observed relationship between ridge crest features and melt content imaged in the crust and
uppermost mantle
The passive experiment consists of 55 broadband ocean bottom seismographs (OBS) and 5 land
seismographs deployed for 10 months to image the larger-scale structure of the melt production region
and the mantle flow pattern. Interaction between the spreading center and arc magmas and fluids may
control many processes along the ELSC. Therefore the OBS array will extend across the active Tonga
volcanic arc to allow imaging of the spatial relationship between the backarc ridge magma source region
and fluid rich regions near the slab and arc magma source. The deployment will also provide an
exceptional record of ELSC seismic activity, including the potential to accurately determine depths and
focal mechanisms. The active source experiment consists of 100 OBS deployments along a 250 km
section of the ELSC extending from the inflated Valu Fa region to the magma-starved northern ELSC
where the axial melt lens is absent. This experiment will image structure on a scale of 1-3 km, and will
provide detailed constraints on thermal structure and melt distribution immediately beneath the ELSC.
The active survey will be carried out during the first part of the passive deployment cruise using the same
OBSs; this single-leg approach saves ship time and OBS costs compared to separate experiments.
Seismic data will be analyzed using body and surface wave tomographic methods and shear wave
splitting analysis to obtain seismic P and S and attenuation images, and constraints on seismic anisotropy
throughout the mantle wedge. These results will be compared to predictions of flow models incorporating
temperature-dependent viscosity, where seismic anisotropy is computed from the orientation distribution
of modeled olivine/enstatite aggregates. The combination of active and passive seismic techniques will
place powerful constraints on seismic properties at different depths and resolution scales, and enable
tracking of melt from initial production at depths of 20->100 km up to the axial magma chamber. If
funded, this project will occur in 2006; however, due to the ever-lengthening waiting list to obtain
broadband OBSs it needs to be scheduled during the current year for results to be obtained before the end
of the R2K program.
back to ELSC home
|