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Abstract

Ganymede’s grooved terrain likely formed during an epoch of global expansion, when unstable extension of the lithosphere resulted in the
development of periodic necking instabilities. Linear, infinitesimal-strain models of extensional necking support this model of groove formation,
finding that the fastest growing modes of an instability have wavelengths and growth rates consistent with Ganymede’s grooves. However, several
questions remain unanswered, including how nonlinearities affect instability growth at large strains, and what role instabilities play in tectonically
resurfacing preexisting terrain. To address these questions we numerically model the extension of an icy lithosphere to examine the growth of
periodic necking instabilities over a broad range of strain rates and temperature gradients. We explored thermal gradients up to 45 K km−1 and
found that, at infinitesimal strain, maximum growth rates occur at high temperature gradients (45 K km−1) and moderate strain rates (10−13 s−1).
Dominant wavelengths range from 1.8 to 16.4 km (post extension). Our infinitesimal growth rates are qualitatively consistent with, but an or-
der of magnitude lower than, previous linearized calculations. When strain exceeds ∼10% growth rates decrease, limiting the total amount of
amplification that can result from unstable extension. This fall-off in growth occurs at lower groove amplitudes for high-temperature-gradient,
thin-lithosphere simulations than for low-temperature-gradient, thick-lithosphere simulations. At large strains, this shifts the ideal conditions for
producing large amplitude grooves from high temperature gradients to more moderate temperature gradients (15 K km−1). We find that the for-
mation of periodic necking instabilities can modify preexisting terrain, replacing semi-random topography up to 100 m in amplitude with periodic
ridges and troughs, assisting the tectonic resurfacing process. Despite this success, the small topographic amplification produced by our model
presents a formidable challenge to the necking instability mechanism for groove formation. Success of the necking instability mechanism may
require rheological weakening or strain localization by faulting, effects not included in our analysis.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Covering nearly two-thirds of the satellite, Ganymede’s
grooved terrain is one of the most tectonically deformed sur-
faces in the Solar System. First clearly resolved in Voyager
images, the grooved terrain consists of series of roughly par-
allel, periodically spaced ridges and troughs (Fig. 1A) (Smith
et al., 1979a, 1979b). Photoclinometric profiles indicate that
typical groove sets have a periodicity of 3 to 10 km and ampli-
tudes of 300 to 400 m (Squyres, 1981). Rather than having steep
scarps typical of fractures or faults, grooves are undulatory in
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nature with root-mean-square slopes near 6◦ and maximum
slopes no larger than 20◦ (Squyres, 1981). Grooves tend to
appear in large polygonal swaths 100s to 1000s of km long
and 10 to 100 km wide. While grooves generally have consis-
tent spacing and orientation within an individual groove swath,
large regions of grooved terrain contain many such swaths, each
crosscutting the others at a different orientation.

Digital terrain models of Uruk Sulcus confirm Voyager ob-
servations, indicating wavelengths of 2–6 km and amplitudes up
to 500 m within the grooved terrain (Giese et al., 1998). How-
ever, high-resolution images from the Galileo spacecraft reveal
that the grooved terrain is intensely tectonized at scales below
the Voyager resolution limit (Fig. 1B) (Pappalardo et al., 1998).
Fourier analysis of topography in the Uruk Sulcus region indi-
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Fig. 1. (A) Voyager image of grooved terrain near the south pole of Ganymede. Grooves have a periodic spacing of ∼10 km. Illumination is from the right.
After Squyres (1982). (B) High resolution Galileo image of grooves in the Uruk Sulcus region (PIA00276, Courtesy NASA/JPL-Caltech). Both Voyager-scale
(∼10 km wavelength) grooves and finer Galileo-scale (∼1 km wavelength) grooves are visible. At high resolution individual groove swaths (labeled ‘A’ and ‘B’)
are seen to cross-cut and partially disrupt one another implying that groove formation can tectonically resurface preexisting terrain. Note that this high resolution
deformation is at a finer scale than the deformation modeled here. Illumination is from the south (bottom). After Pappalardo et al. (2004).
cates that short wavelength (∼1 km) deformation is superim-
posed upon the regional-scale grooves seen in Voyager images
(Patel et al., 1999). This small-scale deformation is lower in am-
plitude than the long-wavelength, Voyager-scale grooves, with
heights of ∼200 m (Pappalardo et al., 1998).

Based on the lack of identifiable contractional features on
Ganymede’s surface, most authors accept that the grooved ter-
rain formed by extensional processes during an epoch of global
expansion (Squyres, 1982; Golombek, 1982; Pappalardo et al.,
1998). The exact cause and magnitude of this expansion re-
mains undetermined. Assuming the grooved terrain to be old,
Squyres (1980) suggested that expansion resulted from inter-
nal phase changes during differentiation of the satellite. Such
volume expansion would increase Ganymede’s surface area by
6–7% (Squyres, 1980). A reanalysis of cratering fluxes in the
jovian system, however, supports the idea that the grooved ter-
rain formed within the last 2 Ga (Zahnle et al., 2003). While
there is much uncertainty in this age constraint, it suggests that
expansion could have occurred during a period of tidal heat-
ing, after differentiation had ceased, as the Galilean system
evolved through a series of Laplace-like resonances (Showman
and Malhotra, 1997). The combination of phase transitions
and thermal expansion caused by tidal heating would increase
Ganymede’s surface area by up to 1–2% globally (Showman
et al., 1997). Alternatively, if Ganymede entered resonance
in a partially differentiated state (like modern Callisto), tidal
heating may have induced complete differentiation. The com-
bination of tidal heating and differentiation can produce larger
global strains than either mechanism alone. Observations of
typical strains involved in the formation of specific groove types
indicate that the global change in Ganymede’s circumference
was large: at least 1.4% but possibly as high as 5.9%, imply-
ing increases in surface area of 2.8% to 12.1% (Collins, 2006).
These observations support the tidally induced-differentiation
mechanism for Ganymede’s global expansion.

Despite relatively small values of global strain, significant
extensional strain has occurred locally on Ganymede. Re-
construction of presumed tilt-block faulting in Ganymede’s
Uruk Sulcus region indicates that local strains exceeded 50%
at the time of groove formation (Collins et al., 1998b). Fur-
thermore, analysis of strained craters, mostly in dark terrain,
shows that rift zones associated with these craters extended
by as much as 180% (Pappalardo and Collins, 2005). The
apparent conflicting evidence for relatively small values of
global strain, but high values of local strain was addressed
by Collins (2006) who found that, while the majority of low-
relief groove terrain has experienced only a few percent strain,
high-relief grooves typically experienced 25% to 50% strain.
While these densely spaced, high-relief grooves tend to be
thought of as “typical” grooved terrain, they actually rep-
resent only ∼2–7% of the length of a typical great circle
transect of the surface. In contrast, more subdued, low-relief
grooves and swaths of smooth bright terrain make up ∼45%
of a great circle surface transect (Collins, 2006). Thus, val-
ues of localized strain between 25% and 100% in regions
of high-relief grooves do not violate global strain estimates
of order 10% because the majority of the surface has un-
dergone only 1–3% strain. High strains are therefore likely
to have been common in regions of high-density, high-relief
grooves.

The exact mechanism by which grooves formed remains un-
certain. Early work based on Voyager data proposed that the
large-scale grooves were extensional fractures or horst-and-
graben that were softened by viscous relaxation and mass wast-
ing (Squyres, 1982; Golombek, 1982; Parmentier et al., 1982).
While Galileo images indicate that at least some of the struc-
tures in the grooved terrain are consistent with horst-and-graben
(Pappalardo et al., 1998), these models never adequately ex-
plained the strong periodicity of groove spacing within the
bright terrain or the undulatory nature of many grooves. To
account for these characteristics, Fink and Fletcher (1981) pro-
posed that Ganymede’s grooves resulted from the formation of
periodic necking instabilities during unstable extension of the
icy lithosphere.
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Fig. 2. Cartoon of pinch-and-swell morphology caused by the formation of a periodic necking instability. Small-scale tilt-block normal faulting (Galileo-scale
grooves) accommodates the formation of large-scale ridges and troughs (Voyager-scale grooves). Modified from Pappalardo et al. (1998).
The necking instability mechanism models Ganymede’s
lithosphere as a brittle surface layer underlain by a viscous
half-space. When extended, any perturbation in the thickness
of the brittle layer may amplify, deforming the lithosphere
into a series of periodic pinches and swells (Fig. 2). This
mechanism was employed by Fletcher and Hallet (1983) to ex-
plain the regular spacing of structures in the Basin and Range
province of the western United States. Their semi-analytical,
linearized, infinitesimal-strain model utilizes a perturbation
analysis wherein a perturbing flow is added to uniform, hori-
zontal extension. The velocity field of each Fourier component
of the perturbing flow is calculated separately, allowing the
amplitude growth of each component to be independently de-
termined. In general, one Fourier component of the perturbation
dominates the flow, growing significantly faster than the other
components and producing strongly periodic topography. This
dominant wavelength is generally three to four times the thick-
ness of the deforming layer.

Assuming a constant growth rate (defined below) and back-
ground strain rate, the amplitude of each Fourier component of
the initial perturbation changes exponentially with the form

(1)A=A0 exp
[
(q − 1)ε̇t

]
,

where A is the amplitude of the topography, A0 is the am-
plitude of the initial perturbation, q is the exponential growth
rate of the Fourier component in question, and ε̇t is the strain.
The growth rate q determines the degree to which instability
growth occurs. If q < 1, no instability growth occurs and the
perturbation decays with time. At q = 1, the growth rate of
the perturbation exactly matches the rate of lithospheric thin-
ning and topographic amplitudes remain constant. For q > 1
the initial perturbation amplifies. Fletcher and Hallet (1983) and
Herrick and Stevenson (1990), assuming 10% strain and am-
plifications (A/A0) of 10–100, suggested exponential growth
rates (q) of ∼40 are needed to produce instability growth con-
sistent with large scale tectonic structures. Allowing for larger
values of strain, Collins et al. (1998b) found that growth rates as
low as 8–13 are capable of producing ridges and troughs 250–
500 m in amplitude.

Herrick and Stevenson (1990) applied the Fletcher and Hal-
let (1983) model to Ganymede and found that the satellite’s
high surface gravity and warm temperatures prevented insta-
bility growth large enough (q > 40) to allow the formation of
grooved terrain. This model was later reexamined by Dombard
and McKinnon (2001) who incorporated the grain-boundary-
sliding (GBS) flow mechanism for ice and lower surface tem-
peratures due to a dimmer young sun and a higher surface
albedo at the time of groove formation and found that, in cases
where thermal gradients exceeded 35 K km−1 (corresponding
to a heat flow of ∼80 mW m−2), exponential growth rates
and dominant wavelengths of instabilities are consistent with
(q > 40) grooved terrain.

Despite the success of Dombard and McKinnon (2001),
the linear stability model suffers from several limitations. The
analysis assumes infinitesimal strain and thus treats only the
initiation of an instability. Thus, predicting the amplitude of
grooves that result from instability growth requires an extrap-
olation from infinitesimal to finite strain. We expect, how-
ever, that nonlinear effects become important as strains become
large. If, for example, instability growth creates lateral vari-
ations in the thickness of the lithosphere comparable to the
lithospheric thickness itself, order unity lateral variations in the
deviatoric tensile stress will exist. This causes the system to
behave nonlinearly. Numerical models of finite-amplitude com-
pressional folding support the prediction of nonlinear behavior
at large strains. These models indicate that growth rates de-
crease at strains larger than ∼10%, in some cases approaching
q = 1, suggesting a saturation limit to the amount of fold ampli-
fication that can occur under finite strain (Zuber and Parmentier,
1996). Furthermore, because the linear stability analysis treats
the growth of each Fourier component of the perturbation sepa-
rately, the Fourier components cannot interact with one another,
an effect that may become important at large strains. Because
of these limitations, the applicability of necking instabilities to
groove formation remains unresolved.

Nonliner modeling of extensional necking instabilities can
inform the debate about the mechanism for bright terrain forma-
tion (and the removal of older, pre-existing craters). Cryovol-
canic (Parmentier et al., 1982; Allison and Clifford, 1987) and
tectonic (Head et al., 1997) resurfacing mechanisms have been
proposed, and both probably play important roles. Digital ele-
vation models indicate that smooth, low-lying regions exist on
Ganymede, suggesting infilling by a low-viscosity cryovolcanic
material (Schenk et al., 2001). Liquid water can be pumped to
the surface from depths of up to 10 km by topographically in-
duced, subsurface pressure gradients (Showman et al., 2004).
This self-limiting pumping mechanism fills low-standing re-
gions with cryovolcanic material while explaining the observed
lack of large-scale cryovolcanic flows across high standing
regions (Showman et al., 2004). However, some regions of
Ganymede’s terrain have been predominately resurfaced by tec-
tonic, rather than cryovolcanic, processes (Head et al., 1997).
Observations of truncated groove sets within the grooved ter-
rain support this hypothesis. In these regions, young groove
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sets cross-cut and partially or completely destroyed structures
in stratigraphically older groove sets (Fig. 1B) (Head et al.,
1997). Furthermore, tectonically disrupted craters indicate that
resurfacing should occur in cases where strains exceed 15%
(Pappalardo and Collins, 2005). Despite these observations, it
is not obvious that extensional tectonics can completely destroy
preexisting structures. Elucidating how extensional instabilities
respond to finite surface topography and large strains is there-
fore essential to understanding how Ganymede’s grooved ter-
rain was formed.

2. The finite-element model

Using the two-dimensional, finite-element model Tekton
(version 2.3) in plane strain (Melosh and Raefsky, 1980), we
simulate the extension of an icy lithosphere to examine the
growth of periodic necking instabilities over a range of strain
rates and temperature gradients. Our model incorporates the
elastic, viscous, and plastic flow properties of ice. Tekton
solves the equations governing the equilibrium between internal
stresses and external (applied) forces. These forces are related
to the nodal displacement of each element by the Young’s mod-
ulus E and Poisson ratio ν. We model the elastic properties of
ice using a Young’s modulus of 1010 Pa and a Poisson ratio
of 0.25. These values are appropriate for clean, unfractured wa-
ter ice at terrestrial surface temperatures (Gammon et al., 1983).
The sensitivity of our results to variations in the Young’s mod-
ulus are described in Section 4. The density of ice is assumed
to be 980 kg m−3.

In addition to elastic deformation, the model incorporates
viscous flow. Although the standard version of Tekton (2.3)
does not include a composite flow law, we extended the model
to utilize recent laboratory data for the power-law flow of ice to
express the total viscous strain rate as (Goldsby and Kohlstedt,
2001; Durham et al., 1997; Kirby et al., 1987)

(2)ε̇visco = ε̇A + ε̇B + ε̇C + ε̇diff + {1/ε̇GBS + 1/ε̇BS}−1,

where subscripts A, B, C, diff, GBS, and BS refer to disloca-
tion creep A, B, and C; diffusion creep; grain boundary sliding;
and basal slip. Each of these mechanisms has a temperature and
stress dependence of the form

(3)ε̇ = Λ(1/d)mσ́ n exp{−Q/RT },
where ε̇ and σ́ are the effective strain rate and deviatoric stress
respectively, Λ is a mechanism-dependent constant, d is the
grain size, m is the grain size exponent, n is the power-law ex-
ponent, Q is the activation energy, R is the gas constant, and
T is the absolute temperature. Diffusion creep is modeled fol-
lowing the approach of Barr and Pappalardo (2005) who cast
volume diffusion in the form of Eq. (3) by defining an effective
Λ based on the diffusion parameters of Goldsby and Kohlst-
edt (2001). Table 1 shows the relevant rheological parameters
for each rheology. Because Tekton uses a different definition of
equivalence than typical creep experiments, the constants Λex

given in Table 1 should be modified for use in Eq. (3) by mul-
tiplying by a factor such that Λ = (3(n+1)/2/2)Λex (Ranalli,
1995, p. 77). This factor was not included in these simulations;
it effect is small, generally less than that introduced by uncer-
tainties in the creep activation energies. Simulations including
this correction factor show negligible differences from those
without.

Under our simulation conditions, dislocation creep B and C
and grain boundary sliding (GBS) dominate the viscous flow.
GBS flow is rate limited by the basal slip (BS) flow mecha-
nism such that the slower of the two mechanisms controls the
flow [Eq. (2)]. In our simulations, GBS is the slower mecha-
nism, so the presence of the BS flow regime has no impact on
model results. Furthermore, Newtonian diffusion, which dom-
inates viscous flow only in warm, low-stress regions, and dis-
location creep regime A, which dominates viscous flow only in
warm, high-stress regions, minimally affect the model results.

If grain-size-sensitive creep (such as GBS) dominates the
viscous flow, the rheology depends heavily on the grain size
of the ice. Linear models suggest that, under some conditions,
the choice of grain size alone can determine whether instability
growth is strong enough to be consistent with groove forma-
tion (Dombard and McKinnon, 2001). Unfortunately, we have
only poor constraints on the grain sizes present in Ganymede’s
lithosphere; reasonable possibilities range from 100 µm to
10 cm. Furthermore, grain size most likely is not constant with
depth, as high temperatures can increase grain sizes, and high
stresses can decrease them. For consistency with published lin-
ear models we have chosen a constant grain size of 1 mm for
our simulations. We discuss the sensitivity of our results to the
choice of grain size in Section 4.

Plasticity is a continuum approach to modeling the brittle
behavior of the lithosphere. Plastic rheologies assume that the
surface is well fractured at a scale much smaller than the model
resolution, and that the deformation resulting from the com-
bined behavior of these fractures can be represented as an ad-
Table 1
Rheological parameters

Creep regime logΛex (MPa−n mm s−1) m n Q (kJ mole−1) Reference

Dislocation creep
Regime A 11.8 0 4.0 91 Kirby et al. (1987)
Regime B 5.1 0 4.0 61 Kirby et al. (1987)
Regime C −3.8 0 6.0 39 Durham et al. (1997)

GBS −2.4 1.4 1.8 49 Goldsby and Kohlstedt (2001)
BS 7.74 0 2.4 60 Goldsby and Kohlstedt (2001)
Volume diffusion −3.46 2 1.0 59.4 Goldsby and Kohlstedt (2001),

Barr and Pappalardo (2005)
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dition to the viscous strain rate. We incorporate plasticity into
our model via the use of Drucker–Prager yielding in which the
yield condition can be written as

(4)σyield = ξ(C cosφ − σm sinφ),

where C is the cohesion, φ is the angle of internal friction, σm is
the mean stress (negative in compression), and ξ = 6/[√3(3 −
sinφ)]. If the square root of the second invariant of the devia-
toric stress tensor within a given finite-element exceeds σyield,
plastic flow initiates, and an additional term (ε̇plastic) is added
to Eq. (2). The elements in which plastic flow can occur are not
determined a priori. Instead, the local stress state completely
determines when and where the onset of plastic behavior oc-
curs. This permits plastic flow, and thus higher strain rates, to
localize in regions of high stress (i.e., in necked regions).

Using a cohesion (C) of 10 MPa and an angle of internal
friction (φ) of 30◦, the strength profile of the lithosphere is de-
fined as

(5)σyield = 12 MPa − 0.69σm,

which conforms to “Byerlee’s rule” for a simple geologic stack.
The strength profile given by Eq. (5) has an intercept value one
order of magnitude higher than the laboratory-measured profile
of Beeman et al. (1988), which has the form

(6)σyield = 1.2 MPa − 0.65σzz.

The use of a high cohesion value permits significant instability
growth over a wide range of free parameters (e.g., temperature
gradients, and strain rates) and therefore allows examination of
how those parameters effect instability growth. An analysis of
the dependence of our results on the choice of cohesion value
is included below (Section 4).

We assume a linear temperature gradient within Ganymede’s
lithosphere. We explore temperature gradients ranging from 5
to 45 K km−1, spanning the range of geologically plausible heat
flows on Ganymede during groove formation. Except at the sur-
face, isotherms are initially horizontal. Following Dombard and
McKinnon (2001), who argued that a weaker sun and higher
surface albedo at the time of groove formation reduced sur-
face temperatures on Ganymede relative to present conditions,
we use a surface temperature of 70 K in all of our simula-
tions. These temperatures likely represent the minimum plau-
sible surface temperatures during groove formation (Dombard
and McKinnon, 2001). Low surface temperatures are particu-
larly favorable to instability growth (Dombard and McKinnon,
2001). The effect of surface temperature on instability growth
rates is described in Section 4. To insure numerical stability, we
cut off the linear temperature increase with depth at 180 K; at
depths greater than this point, the domain becomes isothermal.
The exact value of the cut-off temperature used, within a range
of 180–210 K, does not affect model results. Cut-off temper-
atures above 210 K can cause numerical instabilities to occur.
The transition to an isothermal temperature profile is consistent
with, but somewhat colder than, the thermal profile expected
in a thick convecting ice layer; however, our model does not
include convection. Nor does it include conduction, a process
that can be important in some cases. The effects of including
conduction are discussed in Section 3.4.

We model the dynamics of extension over three orders of
magnitude in background strain rate from 10−12 to 10−15 s−1.
Long computational times prevent the examination of even
lower strain rates. We apply 31.5% extension to each simula-
tion. As described above, such strains are consistent with strain
measurements in regions of high-density, high-relief grooves.
The combination of strain rates and total strains imply total
extension timescales of 104 to 107 yrs. Because domains un-
dergo finite extension at a constant velocity (described below),
the background strain rates described above do not remain con-
stant in time for a given simulation but decrease by ∼24% as
the domain elongates. For the sake of familiarity, we retain the
strain rate terminology in the discussions below with the caveat
that all strain rates refer to the initial strain rate imposed on the
domain.

We use a timestep of 0.1, 1, and 10 yrs for simulations with
times of 104, 105, and 106 yrs or greater, respectively. These
timesteps fall below the shortest Maxwell times found in our
models (∼300 yrs). Decreasing the timestep produces minimal
changes in nodal displacements, only ∼10% of the dimensions
of a single element, and thus has no bearing on the overall de-
formation produced by the model.

Our finite-element domains are generally 40–100 km long,
12–24 km deep, and utilize square elements 333 or 167 m on
a side. Our results are weakly dependent on the mesh resolution
used: final deformation amplitudes vary by 6–7% when resolu-
tion is increased by a factor of 2. However, these small varia-
tions do not affect our general conclusions. Domain lengths and
resolutions permit a broad range of deformation wavelengths to
develop. A small amplitude (usually 10 m), sinusoidal topo-
graphic perturbation is imposed on the top surface of the do-
main to allow the instability to initiate. In general, we use do-
main lengths that are an integral number of half wavelengths
of the initial perturbation. However, the initial perturbation is
phase shifted to prevent symmetry planes from aligning with
domain edges. This helps reduce numerical edge effects (de-
scribed below). Domain depths insure that the effects due to the
bottom boundary are negligible. Extension results from a hor-
izontal fixed displacement boundary condition on the left side
of the domain and a horizontal constant velocity boundary con-
dition on the right. Both the left and right sides of the domain
use a vertical free slip condition to allow extensional thinning
to occur. The bottom of the domain utilizes a free slip condition
in the horizontal direction and a fixed displacement condition
in the vertical.

We apply a constant gravitational acceleration of 1.4 m s−2

to the model, which we initialize by allowing stress to relax
towards a purely hydrostatic state. In the upper 6 km of the
domain, however, stresses never fully relax to hydrostatic due
to the cold surface temperatures. While σzz (vertical normal
stress) conforms to a hydrostatic relationship, σxx and σyy (hor-
izontal normal stress) are less compressive than hydrostatic.
Thus the mean stress in this region is up to 40% lower than
a purely hydrostatic case would predict. This, in turn, reduces
the yield stress by up to 12%. However, upon extension, stresses



444 M.T. Bland, A.P. Showman / Icarus 189 (2007) 439–456
in the upper region of the mesh quickly become tensional rather
than hydrostatic (see below) suggesting that the effect of this
initial deviation from a purely hydrostatic model is small.

3. Results

3.1. Form of the instability

The deformation produced by extension of our model do-
main is consistent with the formation of a necking instability.
Simulations produce a pinch-and-swell morphology in which
deformation at the surface is inverted (of opposite sign) from
the deformation at depth (Fig. 3). Plastic deformation is focused
within the pinched regions, illustrating that increased yielding,
and thus higher stress, occurs within the thinned portions of the
lithosphere. Despite the focusing of plastic deformation within
these regions, no obvious localization of plastic flow occurs
along narrow fault-like planes.

Both the dominant wavelength and the total amplitude of
the deformation depend heavily on the temperature gradient
(Figs. 4A, 4C, and 4D) and strain rate (Figs. 4A and 4B) im-
posed on the simulation. Dominant instability wavelengths vary
from 1.8 (Fig. 4C) to 16.4 km (Fig. 4D) with maximum crest to
trough amplitudes of approximately 75 m (Fig. 4A). Small edge
effects are present in our simulations. These edge effects take
the form of an increase or decrease in groove amplitude of up
to 20% at the edges of the domain (Fig. 4). We detect no sys-
tematic variation in the degree to which groove amplitudes at
the domain edges differed from the “average” groove ampli-
tude in a simulation. Furthermore, the effects were not reduced
by shifting the phase of the sinusoidal topography. For this rea-
son, calculations of total amplification reported in this paper
disregard the topography at edges of the domains.

Lateral variations of the stress field also match our ex-
pectations of a necking instability (Fig. 5A), with stresses
deviating strongly from hydrostatic. Elements within the top
5 km of the lithosphere contain both compressional and ten-
sile stresses. Compressive stresses result from gravitationally
driven hydrostatic stress, and thus align vertically and increase
with depth. Horizontally directed tensile stresses dominate the
near surface elements and focus within the pinched regions of
the lithosphere, being 7–9% greater in groove troughs than in
groove crests (Fig. 5B). This preferential concentration of ten-
sile stress leads to the growth of the necking instability. Greater
stress in the pinched regions promotes more frequent plastic de-
formation (i.e., more strain), which further decreases the thick-
ness of the pinched region, localizing more tensile stress and
reinforcing the positive feedback that drives the instability. At
depths greater than ∼5 km, hydrostatic stress dominates, and
both principal stresses become compressional.

The magnitude of the local strain also varies across the do-
main (Fig. 6). In the near surface, maximum strains (εI ∼ 0.5)
occur within the topographic troughs and minimum strains
(εI ∼ 0.05) occur within topographic crests. These strains are
primarily extensional. This distribution of strain agrees with the
conception of lithospheric necking shown in Fig. 2. As in our
simulations, high degrees of extension occur in Voyager-scale
(A)

(B)

Fig. 3. (A) Deformed finite-element model after 31.5% extension illustrating
the degree of deformation at the surface and at depth. The shaded layer indi-
cates where plastic deformation has occurred at any point during the simulation,
while black elements indicate where plastic flow has occurred in the most recent
timestep. (B) Enlargement of surface deformation showing material contours
that were originally horizontal and vertical but are now deformed into pinches
and swells. Asterisks indicate elements in which plastic flow has occurred in
the most recent time-step. Plus signs indicate where plastic flow has occurred
at any point during extension. The scattered distribution of plastic behavior re-
flects the fact that plastic failure relaxes local stresses back below the yield
stress. These stresses require several timesteps (∼3 or 4) to rebound far enough
above the yield stress for plastic flow to occur again. Thus while the layer as
a whole behaves plastically, only a fraction of the individual elements undergo
plastic deformation in a given timestep. Vertical exaggeration is 2:1 in both (A)
and (B).

troughs and low degrees of extension occur in Voyager-scale
crests (Pappalardo et al., 1998). At depth the strain pattern in
our simulations is reversed from that at the surface, with max-
imum strains occurring beneath topographic crests and mini-
mum strains occurring below topographic troughs. This pattern
indicates that the “pinch-and-swell” morphology produced by
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Fig. 4. Typical topographic profiles produced by our simulations for a range
of initial conditions: (A) dT/dz = 15 K km−1 and ε̇ = 10−13 s−1.
(B) dT/dz = 15 K km−1 and ε̇ = 10−14 s−1. (C) dT/dz = 45 K km−1 and
ε̇ = 10−12 s−1. (D) dT/dz = 5 K km−1 and ε̇ = 10−15 s−1. Each model was
initialized with a single sinusoidal perturbation with an amplitude of 10 m. Do-
mains were strained by 31.5%.

our necking instability is not vertically symmetric and may re-
sult from flow at depth accommodating necking at the surface.

3.2. Infinitesimal strain

We first examine the effect of infinitesimal strain on instabil-
ity growth. To do this, we calculate exponential growth rates (q)
of our simulated necking instabilities at small strains. We im-
pose an initial perturbation consisting of a single sine wave of
known amplitude and wavelength on a domain with a specific
thermal gradient and strain rate. As extension occurs, we extract
and Fourier transform topographic profiles of the surface to pro-
duce power spectra of the deformation. At small strains, the
power spectra are strongly unimodal, with a peak at the imposed
perturbation wavelength. These spectra provide a measure of
the growth of the initial perturbation amplitude as a function of
strain and allows calculation of exponential growth rates. The
determination of exponential growth rates is only valid in the
case where q is a constant, requiring strains to be small. We cal-
culated growth rates after 3% extension, which is sufficient to
allow accurate measurement but small enough to avoid the non-
linear behavior expected at large strains. Amplitude growth at
these strains is in excellent agreement with Eq. (1). This method
is consistent with linear models in both the use of small strains
and the examination of the growth of each Fourier component
of the initial perturbation individually.
(A)

(B)

Fig. 5. (A) Orientation and relative magnitudes of principal stresses for a sim-
ulation with dT/dz = 15 K km−1 and ε̇ = 10−13 s−1 extended by 31.5%
(Fig. 4A). A two-part symbol designates the principal stress in each element,
one part for each principal stress. Hour glass shapes indicate compression,
while lines indicate extension. The orientation of the symbol aligns with the
orientation of the two principal stresses. (B) Profile of horizontal stress (σxx )
across the surface of the domain. The figures show only a small portion of the
total domain.

Repetition of this procedure for a range of initial perturba-
tion wavelengths permits measurement of the growth rate as
a function of initial perturbation wavelength, q(λ), for a par-
ticular thermal gradient and strain rate. We can then determine
both the wavelength that amplifies the fastest (λd ) and the maxi-
mum growth rate (q) for those particular conditions. Fig. 7 is an
example of a q(λ) curve, and indicates that for an initial pertur-
bation amplitude of 10 m, temperature gradient of 15 K km−1

and strain rate of 10−13 s−1 the dominant wavelength is 4.44 km
and the maximum growth rate is 8.9. While the q(λ) curve
shown in Fig. 7 is typical of our simulations, the exact width
of each curve varies as function of the temperature gradient.
Low temperature gradients produce wide, broadly peaked q(λ)

curves in which a relatively large range of wavelengths have
growth rates close to the maximum. High temperature gradients
produce narrow, sharply peaked q(λ) curves in which devia-
tions from the dominant wavelength as small as 25% produce
little or no instability growth. This implies that, if the initial
perturbation contains multiple topographic wavelengths, high
temperature gradients better amplify a single dominant wave-
length than low temperature gradients (see Section 3.6).

The amplitude of the initial perturbation imposed on our
simulations influences the magnitude of the growth rates calcu-
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Fig. 6. Grey-scale gives the square root of the second invariant of the total strain

(εI =
√

1
2 (ε2

xx + ε2
yy) + ε2

xy ) within a domain extended by 31.5%, at a strain

rate of 10−13 s−1 and a temperature gradient of 15 K km−1 (Fig. 4A). The
surface deformation is plotted as a heavy black line in the gray-scale plot, and
only the top half of the domain is shown. The surface trace of εI is shown above
the gray-scale plot.

Fig. 7. Exponential growth rate (q) as a function of the wavelength (λ) of the
initial 10 m-amplitude perturbation imposed on the domain for a model with
a temperature gradient of 15 K km−1 and strain rate of 10−13 s−1. Dashed lines
indicate values of the dominant wavelength (λd ) and the maximum exponential
growth rate (q) for this set of physical parameters.

lated from these infinitesimal strain simulations. Decreasing the
perturbation amplitude to 1 m increases growth rates for high
temperature gradient simulations, but decreases growth rates for
low temperature gradient simulations. At a temperature gradi-
ent of 45 K km−1, q increases from 11.5 with a 10 m-amplitude
perturbation to 12.7 with a 1 m-amplitude perturbation. In con-
trast, at a temperature gradient of 5 K km−1, q decreases from
6.6 with a 10 m-amplitude-perturbation to 5.3 with a 1 m-
Fig. 8. (A) Contour plot of dominant wavelength λd in kilometers (dashed
contours) and exponential growth rate q (solid contours) as a function of tem-
perature gradient and strain rate at infinitesimal strain (3%). (B) Contour plot of
total amplification (ratio of the amplitude of the final deformation to the ampli-
tude of the initial perturbation) at finite strain (31.5%). Dominant wavelengths
show only modest changes at finite strains. Diamonds indicate parameter values
of the simulations.

amplitude-perturbation. Why growth rates depend on the am-
plitude of the initial perturbation remains unclear; however, this
dependence suggests that all exponential growth rates calcu-
lated from our model have uncertainties of ∼1.5.

Using the methods described above, we calculated domi-
nant wavelengths and maximum growth rates for the entire
temperature-gradient and strain-rate parameter space, assuming
an initial perturbation amplitude of 10 m (Fig. 8A). Dominant
wavelengths decrease with increasing temperature gradient and
decreasing strain rate, with λd ranging from 12.5 km at a tem-
perature gradient of 5 K km−1 and strain rate of 10−12 s−1

to 1.4 km at a temperature gradient of 45 K km−1 and strain
rate of 10−15 s−1. Exponential growth rates, q , increase with
increasing temperature gradient and are a maximum at mod-
erate strain rates (10−13 s−1). Values range from a maximum
of 11.5 at a temperature gradient of 45 K km−1 and strain
rate of 10−13 s−1, to a minimum of 2.3 at a temperature
gradient of 5 K km−1 and strain rate of 10−12 s−1. The in-
crease in exponential growth rates with increasing tempera-
ture gradient is qualitatively consistent with previous linearized,
infinitesimal-strain models, which also show a preference for
moderate to low strain rates (Herrick and Stevenson, 1990;
Dombard and McKinnon, 2001).

Despite their qualitative similarities, however, our numerical
results differ quantitatively from previous linear model results.
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At a given temperature gradient and strain rate, the numeri-
cal model produces dominant instability wavelengths a factor
of two to three shorter than those calculated from the linear
model. If H is the thickness of the layer in which plastic flow
has occurred, then λd/H ∼ 1–1.5 for the full range of tem-
perature gradients used in our simulations, rather than 3 or 4
as predicted by linear models (Fletcher and Hallet, 1983). Our
smaller ratio is most likely caused by the increase in the strength
of the lithosphere with depth, which results in an effectively
thinner layer. This depth dependence was not included in the
linearized models. Our numerical model also produces maxi-
mum exponential growth rates, q , an order of magnitude lower
than growth rates calculated from linear models, which found
that growth rates of 100 or more are possible at high ther-
mal gradients (Dombard and McKinnon, 2001). The difference
in magnitude between our numerical results and previous lin-
earized, semi-analytical results is not consistent across the pa-
rameter space. The results of the two models are most similar in
cases in which both the temperature gradients and strain rates
are low (the lower left quarter of Fig. 8A), differing by as little
as a factor of two. The difference increases with both increasing
temperature gradient and increasing strain rate, with a differ-
ence in magnitude of up to a factor of fifteen both at high strain
rates (10−12 s−1, top of Fig. 8A), and at high temperature gra-
dients and low strain rates (bottom right corner of Fig. 8A).

Our results, therefore, represent a significant departure from
the results of previous linear models; however, we feel that this
difference results from a more accurate representation of the
rheological behavior of ice rather than from shortcomings of
the numerical model. We emphasize that the numerical results
described in this subsection occur at small strains, so nonlin-
ear effects do not cause the discrepancy with the linear model
results. Instead, differences in the implementation of the plastic
rheology can probably account for the different model behavior.
The linear model invokes plasticity by defining a near-surface
layer in which the power-law exponent (n) of the rheology de-
scribed by Eq. (3) is high (∼106). The relationship between
stress (σ ) and strain rate (ε̇) in Eq. (3) can be written in the
generalized form ε̇ = Γ σn. If we assume that the strain rate
is related to the stress by a constant that depends on the yield
strength with the form Γ = Dσ−n

yield, where D is a constant with

units of s−1, the relationship between the stress and the strain
rate becomes

(7)ε̇ = D(σ/σyield)
n

(Patterson, 1969). This model approximates plastic behavior for
large values of n since if σ > σyield, the strain rate is nearly
infinite, and if σ < σyield, the strain rate is negligible. This for-
mulation is a tractable representation of pure plasticity and so is
a reasonable choice for analytical models. However, Eq. (7) is
not equivalent to true plasticity. The problem lies in the choice
of the constant D that relates the stress ratio (σ/σyield) to the
strain rate. Clearly, if σ = σyield, the strain rate depends sensi-
tively on this parameter since, for this value, ε̇ = D. However,
the physical interpretation of D is unclear. In contrast, Tek-
ton provides a more realistic formulation of plastic behavior
in which the magnitude of the plastic strain rate depends on
the local stress field and a stress-relaxation timescale (Owen
and Hinton, 1980). This formulation of plastic flow generates
lower, but more physically meaningful growth rates than the
formulation described above. Furthermore, we again note that
the numerical model uses a depth-dependent yield stress while
that in Dombard and McKinnon (2001) was depth-independent,
and this difference may also cause some differences in the be-
havior of the two models.

Unlike our numerical model, the linear model also does not
include elasticity. Because of this, all of the strain in the lin-
ear model partitions into plastic or viscous deformation. In the
numerical model, however, strain partitions into elastic as well
as viscous and plastic deformation. This reduces exponential
growth rates in the numerical model because the plastic strain
is the major contributor to necking instability growth in our
simulations. The importance of elasticity is illustrated by sim-
ulations in which the Young’s modulus is two orders of mag-
nitude higher than typical ice values; increasing the Young’s
modulus decreases the role of elasticity in the model since
εelastic ∝ (1/E), where εelastic is the elastic strain and E is the
Young’s modulus. As described in Section 4, increasing the
Young’s modulus significantly increases the total amplification
produced by extension. The inclusion of elasticity’s damping
effects appears essential to understanding the growth of neck-
ing instabilities, thus exponential growth rates calculated from
linear models without elasticity may be artificially high.

We emphasize that, while our growth rates are significantly
smaller than previous calculations, they are still consistent with
the requirement suggested by Collins et al. (1998b) that q must
be greater than ∼8–13 to form Ganymede’s grooves. Thus sim-
ulations of necking instabilities at infinitesimal strain continue
to support the concept that Ganymede’s grooves formed via
extensional necking. As we describe below, however, nonlin-
ear behavior at finite strains works to curtail the formation of
grooves and presents a formidable challenge to groove forma-
tion via extensional necking.

3.3. Finite strain

Although large temperature gradients (dT/dz � 45 K km−1)
promote high initial growth rates, the formation of large am-
plitude grooves at finite strain actually occurs most easily at
intermediate temperature gradients (∼10–15 K km−1). Fig. 9
shows the amplitude growth of the dominant wavelength of
a necking instability for two different temperature gradients at
large strains. These curves were constructed using the Fourier
analysis method described above, and each plots the growth
of the wavenumber that dominates the surface deformation of
the extended domain. Here, the ‘wavenumber’ we use is sim-
ply one over the number of wavelengths that fit into a do-
main (the ‘per-domain wavenumber’); note that a constant per-
domain wavenumber corresponds to a wavenumber expressed
as the inverse of the wavelength in kilometers (the ‘per-km
wavenumber’) that decreases as the domain extends. In both
simulations, amplitudes initially increase exponentially [as ex-
pected from Eq. (1)], but exponential growth is not sustained
outside the infinitesimal strain regime. Instead, growth rates
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Fig. 9. Amplitude of the per-domain wave number (see text) that dominates
the final surface deformation as a function of strain for two models with differ-
ent thermal gradients (15 and 45 K km−1), each with an initial 10 m-amplitude
perturbation consisting of a single sinusoid of the corresponding expected dom-
inant wavelength. In this figure, exponential growth would plot as a straight
line. We note that plotting the amplitude of the per-km wave number yields
qualitatively identical results. Because the amplitudes derived from the Fourier
analysis (shown here) include edge effects (see text) while the amplitudes mea-
sured by direct measurement of deformation do not, amplitude values here vary
slightly from those described elsewhere.

decrease sharply at finite strain, approaching q = 1. These re-
sults indicate that nonlinearities play a crucial role in instability
growth at strains exceeding ∼10%. Linear extrapolation of ini-
tial growth rates, therefore, overpredicts actual groove heights.
For example, at a temperature gradient of 45 K km−1 and strain
rate of 10−13 s−1 the initial growth rate determined from our in-
finitesimal strain models is 11.5. Using this initial growth rate to
extrapolate to 31.5% strain predicts the formation of 270 m tall
grooves. Instead, because growth rates decrease at large strains,
these conditions produce grooves only 42 m tall, ∼15% as tall
as predicted by infinitesimal-strain models.

The fall-off in exponential growth rate occurs at lower
groove amplitudes for higher temperature gradients (Fig. 9).
In the 45 K km−1 temperature-gradient simulation, the growth
rate of the dominant wavelength (1.67 km) begins to decrease
after only 7% extension (A ∼ 13 m), leading to a maximum
amplitude of 42 m after 31.5% extension. For a similar sim-
ulation with a temperature gradient of 15 K km−1 the growth
rate of the dominant wavelength (4.44 km) only begins to de-
crease after 20% extension (A ∼ 40 m), leading to a maximum
amplitude of 76 m after 31.5% extension. Thus, in the limit of
large strains, the early fall-off in growth rate at high tempera-
ture gradients allows low temperature gradient simulations with
low initial growth rates to produce more amplification than high
temperature gradient simulations with high initial growth rates.

The fall-off in growth at high temperature gradients results
in a shift in the ideal conditions for producing large-amplitude
grooves to lower temperature gradients than predicted by lin-
ear models. Contours of total amplification (A/A0) at large
strain (31.5%), illustrate this fact (Fig. 8B). An extrapolation
of the growth rates calculated at infinitesimal strain (Fig. 8A)
predicts that the greatest amount of amplification should oc-
cur at temperature gradients of at least 45 K km−1. However,
the actual maximum amplification occurs at 15 K km−1 pro-
ducing 7.6-fold amplification of the initial 10 m perturbation
after 31.5% strain. Amplification depends only weakly on the
strain rate with a slight preference for moderate strain rates
near 10−13 s−1.

Because the conditions for maximum amplification depend
on a balance between rapid growth at high thermal gradients
and sustained growth at low thermal gradients, the exact values
of temperature gradient and strain rate at which the maximum
amplification occurs depends strongly on the total amount of
strain imposed on the model. If strains are small, high thermal
gradients are desired such that growth occurs rapidly during
the brief period of extension. If large strains are imposed, low
thermal gradients that produce sustained growth throughout the
extension are preferable. Thus the physical conditions that pro-
duce a given groove amplitude are nonunique. One must there-
fore use caution when attempting to constrain the geophysical
conditions that produced specific groove sets on Ganymede.

Two independent mechanisms appear to cause the fall-off in
growth at large strains. First, amplitude growth becomes sat-
urated because of the finite thickness of the deforming layer.
Mass conservation suggests that the maximum crest to trough
amplitude that can be formed by pinching an initially horizontal
layer is on the order of the layer thickness itself. In reality, be-
cause instability growth can produce more deformation at depth
than at the surface (in some cases by more than 50%), the max-
imum crest to trough amplitude of surface deformation will
be some fraction of the layer thickness. The thickness of the
deforming layer is primarily controlled by the temperature gra-
dient of the lithosphere. Thus, growth fall-off due to amplitude
saturation occurs at smaller strains (lower groove amplitudes)
in high-thermal-gradient, thin-lithosphere simulations than in
low-thermal-gradient, thick-lithosphere simulations.

Second, the increasing wavelength of the deformation as
strains become large, and the finite width of the q(λ) growth
curve combine to limit amplitude growth. As extension be-
gins, a necking instability forms with a particular dominant
wavelength (the peak of q(λ) curve). As strain continues, the
wavelength of the topography will continually increase with the
extending domain, moving off the peak of the q(λ) curve un-
til, eventually, the surface deformation is substantially longer
than the dominant wavelength and instability growth declines.
Because the q(λ) curve is broad for low temperature gradients
and narrow for high temperature gradients (see Section 3.2),
the growth fall-off occurs earlier for high temperature gradi-
ent simulations than for low temperature gradient simulations.
Furthermore, as extension occurs, thinning of the lithosphere
increases the thermal gradient causing the dominant wavelength
to shift towards shorter wavelengths and away from the ex-
tending wavelength of the growing topography. Thus, at fi-
nite strains, the wavelength of the surface deformation and the
wavelength of dominant growth migrate away from each other.

There is evidence that both of these processes are occur-
ring in our simulations. Amplitude saturation effects are seen
when comparing simulations with an initial perturbation am-
plitude of 1 m to the 10 m perturbation simulations already
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described. In the 1 m-amplitude simulations, instability growth
occurs exponentially through 17% strain for all temperature
gradients. Only at higher strains do the highest temperature
gradient (thinnest lithosphere) simulations begin to show a de-
crease in growth rate. In contrast, in the 10 m-amplitude sim-
ulations (Fig. 9), high temperature gradient simulations exhibit
a fall-off in growth rate at strains as low as 7%. Thus we find
that small initial perturbations can amplify extensively before
reaching the saturation limit while large amplitude perturba-
tions quickly saturate. However, even small amplitude initial
perturbations show some decrease in growth at large strains.
Growth fall-off at these small amplitudes is not likely due to
amplitude saturation effects and must therefore be caused by
the wavelength of deformation moving off the peak of the q(λ)

curve.

3.4. Effect of heat conduction

Our model does not include conduction (Section 2), but
we can estimate how it would affect our results. Employing
a simple model in which the timescale for heat conduction, τ ,
across a layer of thickness H is given by τ = H 2/κ , where
κ is the thermal diffusivity (Turcotte and Schubert, 2002) we
find that ∼3 × 106 years are required to conduct heat across
a layer 10 km thick, a thickness consistent with the lithospheric
thicknesses of our low temperature gradient simulations. This
suggests that, at low temperature gradients, only the lowest
strain-rate runs are affected by heat conduction because exten-
sion occurs faster than heat can conduct out of the layer. Higher
temperature gradient simulations have lithospheric thicknesses
closer to 1 km. The timescale for conduction across such a layer
is ∼3×104 years. Thus at high thermal gradients, heat conducts
out of lithosphere faster than extension occurs at all but the vary
highest strain rates we examined.

Without conduction, extensional thinning effectively in-
creases the thermal gradient in the lithosphere. The relative
increase in thermal gradient is equal to the relative decrease
in layer thickness, which is equal to the relative increase in do-
main length. Thus, in our simulations the temperature gradient
increases by 31.5% over the course of extension. With conduc-
tion, simulations with high thermal gradients and low strain
rates (i.e., when conduction occurs much faster than exten-
sion) would maintain their initial thermal gradient because any
increases in temperature at a given depth (due to extensional
thinning) would quickly decay back to the original thermal pro-
file. Thus, after 31.5% extension, our low strain rate simulations
have a higher temperature gradient than they should if conduc-
tion were included.

We can use these ideas to infer how conduction would affect
our simulations. Amplification contours at high thermal gradi-
ents and low strain rates (lower right portion of Fig. 8B) would
therefore shift to lower temperature gradients. While our quan-
titative results (e.g., the thermal gradient at which maximum
amplification occurs) may be slightly modified, our qualitative
results would likely remain unchanged. Because growth rates
in Fig. 8A are calculated after only 3% extension, these values
would be unaffected by the inclusion of heat conduction.
3.5. Effect of the initial perturbation

The initial topographic perturbation influences instability
growth. If the expected dominant wavelength produced by
a particular thermal gradient and strain rate differs significantly
from the wavelength of the imposed initial perturbation, com-
plex wavelength interactions can occur. The most interesting
type of deformation occurs when the imposed wavelength is
somewhat longer (by a factor of �1.4) than the dominant wave-
length. At these values, extension amplifies overtones of the
imposed perturbation wavelength (generally half the imposed
wavelength) rather than the dominant or imposed wavelengths
themselves. Fig. 10 shows a simulation in which we imposed
an initial wavelength much longer than the expected dominant
wavelength (Fig. 10A). Instead of simply failing to amplify the
initial perturbation as expected from the linear model, extension
amplifies an overtone wavelength half as long as the imposed
perturbation, producing two wavelengths of deformation in the
resulting topography (Fig. 10B). Fig. 10C shows the amplitude
growth for wavelengths of the imposed perturbation (initially
6.67 km—solid line), half the imposed perturbation (initially
3.33 km—dash–dot line), and the expected dominant wave-
length (4.44 km—dashed line) as a function of strain. Both the
imposed perturbation and the expected dominant wavelength
show minimal growth with increasing strain, but half the im-
posed perturbation wavelength shows significant amplification

Fig. 10. Illustration of the effect of initial perturbation on instability growth.
(A) Topographic profile of the initial perturbation of 6.67 km-wavelength
imposed on a domain with physical conditions favoring growth of
a 4.44 km-wavelength perturbation. (B) Profile of final surface deformation
after 31.5% extension. The final morphology is a superposition of the initial
perturbation wavelength and an overtone of half the initial perturbation wave-
length. (C) Amplitude growth as a function of strain for the per-domain wave-
lengths of the initial perturbation (initially 6.67 km—solid line), the dominant
wavelength (initially 4.44 km—dashed line), and half the initial perturbation
wavelength (initially 3.33 km—dot-dashed line).
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Fig. 11. Illustration of the effect of initial perturbation amplitude (A0) on wave-
length interactions. Power spectra of four simulations with temperature gradi-
ents of 15 K km−1, strain rates of 10−13 s−1, and total strains of 31.5% are
shown in which the wavelength of the imposed perturbation (initially 6.67 km,
which becomes 8.77 km after 31.5% extension) is significantly different than
the dominant wavelength expected (5.26 km) for the conditions of the model.
The simulations differ only in the amplitude of the initial perturbation. Initial
perturbation amplitudes are (A) 0.1 m, (B) 1 m, (C) 10 m, and (D) 100 m. The
dominant (‘D’), imposed (‘I’), and overtone (‘O’) wavelengths are indicated by
dotted lines.

at large strain, increasing from an amplitude of ∼0 m to an av-
erage amplitude of ∼15 m.

The amplitude of the initial perturbation strongly affects the
results described above (Fig. 11). At small initial perturbation
amplitudes (Fig. 11A), the imposed perturbation does not influ-
ence instability growth and the deformation wavelength equals
the dominant wavelength. As the initial perturbation amplitude
increases, however, its influence, along with that of its over-
tone, on the resulting topography increases (Figs. 11B, 11C,
and 11D). These results suggest that the imposed perturbation
must have an amplitude of at least 10 m before the imposed
wavelength, rather than the expected dominant wavelength,
controls the wavelength of the deformation.

These results indicate that instability growth on Ganymede
depends not only on the conditions present during the most
recent groove forming event, but also on the entire exten-
sional history of the region. For example, if a small amount
of extension occurs with a low lithospheric thermal gradient,
moderate-amplitude, long-wavelength deformation occurs at
the surface. If a later period of extension occurs with a higher
thermal gradient, the pre-existence of long wavelength topog-
raphy on the surface, rather than the physical conditions within
the lithosphere, controls the wavelength of the deformation pro-
duced by the extension. Observations of Ganymede support
such complex groove histories (Collins et al., 1998a). Infer-
ences of the physical conditions that produced a given groove
set must therefore carefully consider the entire strain history of
the region.

3.6. Nonperiodic initial perturbations

Numerical modeling of extensional necking instabilities al-
lows a detailed investigation of how the presence of multiple
wavelengths of topography affects instability growth. As pre-
viously noted, linear, infinitesimal-strain models are limited to
examining the growth of each Fourier component of the ini-
tial perturbation independently. In reality, the pre-grooved sur-
face of Ganymede contained a large number of topographic
wavelengths simultaneously. The finite width of the q(λ) curve
shown in Fig. 7 indicates that, if present, a range of wave-
lengths, rather than a single dominant wavelength, will am-
plify as extension occurs. These simultaneously growing wave-
lengths may interact as topographic amplitudes become large.
To investigate this interaction, we performed simulations in
which the initial perturbation contained multiple wavelength
components. These simulations provide insight into how ex-
tensional necking can contribute to the tectonic resurfacing of
long-wavelength, preexisting terrain by modifying random ini-
tial topography into periodic ridges and troughs.

We created an initial perturbation containing 16 wavelengths
ranging from 10 to 1.25 km, which were each given a random
phase shift, added together and renormalized to have a max-
imum peak to trough amplitude of 15 m. Figs. 12A and 12B
show the resulting perturbation and a power spectrum of the
topography. The Fourier approach to monitoring amplitude
growth was again used, allowing the growth of each compo-
nent of the deformation to be tracked separately.

Figs. 12C and 12E show topographic profiles of the de-
formation caused by extending such a domain by 31.5%, at
a strain rate of 10−13 s−1, for temperature gradients of 15 and
30 K km−1, respectively. Power spectra derived from these pro-
files are shown in Figs. 12D and 12F. Both the topographic
profiles and their spectra indicate that growth of the necking
instability has removed (q � 1) both the longest and short-
est wavelength components of the initial perturbation while
strongly amplifying a small range of wavelengths. Changing the
temperature gradient within the model lithosphere results in sig-
nificantly different surface deformation. The 15 K km−1 model
produces a dominant wavelength of ∼5 km and a maximum
crest to trough amplitude of ∼60 m suggesting amplification of
the initial perturbation by a factor of 4–6. The 30 K km−1 model
has a dominant wavelength of ∼3 km and maximum crest to
trough amplitudes of ∼45 m. The decrease in the amplitude of
the deformation at higher temperature gradients matches our
expectations from the finite strain modeling described above
(Section 3.3). Since the two models utilized the same initial
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Fig. 12. Demonstration of a necking instability’s potential for modifying preex-
isting terrain. The initial perturbation (A and B) is composed of 16 wavelengths
between 1.25 and 10 km. Topographic profiles and power spectra of the fi-
nal surface deformation after 31.5% extension are shown for a simulation with
a temperature gradient of 15 K km−1 (C and D) and 30 K km−1 (E and F).
The effect of initial perturbation amplitude is illustrated by a simulation with
a 150 m amplitude perturbation and a temperature gradient of 15 K km−1

(G and H). In all cases the strain rate was 10−13 s−1.

perturbation, the differences in their final deformation results
from differences in the physical conditions of the lithosphere.
Furthermore, changing the phase shifts of the included wave-
lengths of topography has a negligible effect on the final form
of the deformation. Thus, it is clear that only the wavelengths
present in the topography, rather than its specific shape plays
a significant role in instability growth.

Careful examination of the growth of the “removed” wave-
lengths indicates that they have exponential growth rates �1.
Therefore, rather than the dominant wavelength simply out-
growing these wavelengths, extension of the surface actually
damps them out. A correlation exists, however, between the
width of the q(λ) curve derived from infinitesimal-strain mod-
eling (Fig. 7) and the range of wavelengths that show positive
growth in the multiple-initial-wavelength simulations. As noted
in Section 3.2, the width of the growth curve depends on the
thermal gradient of the lithosphere: high temperature gradients
produce narrow, sharply peaked q(λ) curves and low tempera-
ture gradients produce broadly peaked q(λ) curves. We expect,
therefore, that higher temperature gradients will more easily
amplify a single wavelength of the deformation than lower tem-
perature gradients. A comparison of the power spectra of the
15 K km−1 and the 30 K km−1 simulations shown in Figs. 12D
and 12F illustrates this effect. In the 15 K km−1 model the
power spectrum shows strong amplification of a range of wave-
lengths between 4.4 and 6.6 km. In contrast, the power spec-
trum of the 30 K km−1 model indicates that growth occurs only
in the wavelength range between 3.1 and 3.5 km. Thus while the
lower temperature gradient model produces greater-amplitude
deformation, the higher temperature gradient model produces
deformation with stronger periodicity. We might therefore ex-
pect that, on Ganymede, grooved terrain swaths with closely
spaced grooves (short wavelengths) would contain a smaller
range of wavelengths in their spectra (i.e., be more sinusoidal)
than grooved terrain swaths with wide spacings (long wave-
lengths).

Current observational evidence is inconclusive on this point.
Patel et al. (1999) performed a Fourier analysis to determine
the dominant wavelengths present in three diverse swaths of
grooves within bright terrain and one set of groove lanes within
the dark terrain of Nicholson Regio. From this analysis no pat-
tern emerges suggesting that groove swaths with shorter wave-
lengths (e.g., Uruk Sulcus with a longest dominant wavelength
of 3.75 km) are more strongly periodic than groove swaths with
longer wavelengths (e.g., Byblus Sulcus with a longest dom-
inant wavelength of 10 km). However, the small number of
groove swaths imaged at high enough resolution to accurately
measure short topographic wavelengths, and the presentation
of the Patel et al. (1999) wavelength data in binned histograms
makes a conclusive analysis of variations in periodicity diffi-
cult.

Comparison of our numerical results to an analytical predic-
tion of instability growth provides insight into the role of wave-
length interactions in creating the surface deformation shown in
Fig. 12. Equation (1) gives the final amplitude (Amax) produced
by instability growth at the dominant wavelength as Amax =
A0 exp[(qmax − 1)ε̇t]. Likewise, the amplitude of the deforma-
tion produced by the growth of a wavelength on the flank of the
q(λ) curve (Fig. 7) is given by Aflank = A0 exp[(qflank − 1)ε̇t],
where qflank is the growth rate at that particular wavelength.
The ratio of the amplitude of the deformation produced at the
dominant wavelength to the amplitude of the deformation at
a flanking wavelength is then

(8)Amax/Aflank = exp[�qε̇t],
where �q is the difference between the growth rates at the
dominant (qmax) and flanking (qflank) wavelength. This ratio
provides an estimate of how well extension can amplify a single
wavelength of deformation when the initial perturbation con-
tains many wavelengths.

We can use the results of Fig. 7 to estimate the Amax/Aflank
predicted by our infinitesimal-strain models. For a tempera-
ture gradient of 15 K km−1 and strain rate of 10−13 s−1 the
growth rate at the dominant wavelength is 8.9. At a wave-
length of 3.63 km, on the flank of the q(λ) curve, the growth
rate is 6. �q therefore equals 2.9 and, assuming 31.5% ex-
tension, Amax/Aflank is 2.5. Thus, one might expect that the
amplitude of the dominant wavelength in the multi-wavelength-
perturbation model shown in Figs. 12C and 12D should be
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about twice the amplitude of the “off-peak” wavelengths. How-
ever, examination of the power spectrum shown in Fig. 12D
indicates that the dominant wavelength (5 km) has an ampli-
tude ∼4–7 times greater (rather than ∼2.5 times greater) than
the flanking wavelength (3.63 km). This suggests that, at fi-
nite strains, a nonlinear interaction occurs between growing
wavelengths in which faster growth of one particular wave-
length inhibits the growth of all other wavelengths, producing
more pronounced periodicity than is predicted by Eq. (8), where
wavelengths do not interact.

To better understand how wavelengths interact as amplifi-
cation occurs, we examine how the final form of the topog-
raphy produced by extending a multi-wavelength perturbation
depends on the amplitude of that initial perturbation. Decreas-
ing the amplitude of the initial perturbation to 1.5 m (maximum
peak to trough) in cases with dT/dz = 15 K km−1 and ε̇ =
10−13 s−1 produced final topography very similar to Fig. 12C
but with ten times smaller amplitude. The amplitude difference
between the dominant and “off-peak” wavelengths is reduced
relative to that of the 15 m-amplitude perturbation case, how-
ever, with the amplitude of the dominant wavelength ∼3.5–4.5
times greater than the amplitude of the off-peak wavelengths.
This result suggests that nonlinear effects play a more signifi-
cant role in instability growth at higher amplitudes. Increasing
the amplitude of the initial perturbation to 150 m (maximum
peak to trough) more significantly affects instability growth
(Figs. 12G and 12H). While the resulting deformation is still
periodic with a wavelength near 5 km, a significant short wave-
length component of the initial perturbation remains in the
topography. The existence of residual topography is permitted
by the smaller degree of amplification of the initial perturbation
in the 150 m amplitude simulation; extension amplifies the per-
turbation by a factor of approximately 4–6 in the low amplitude
models but by less then a factor of 2 in the 150 m amplitude
model. Such small amplification apparently cannot sufficiently
remove the short wavelength topography.

The growth of a single dominant wavelength from large-
amplitude, random initial topography (as shown in Figs. 12C
and 12E) is not an obvious result. One could imagine that, in-
stead of producing periodic deformation, nonlinearities simply
amplify whatever irregularities exist in the initial topography,
leading to large-scale but irregular (nonperiodic) deformation.
In fact, numerical models of finite-amplitude compressional
folding support this alternative conception of growth, finding
that amplification of an initially random perturbation does not
immediately lead to deformation that reflects the expected dom-
inant wavelength (Mancktelow, 1999). Instead, these models
show that, if initial perturbation amplitudes are large, the initial
perturbation geometry exerts a strong influence on the final fold
geometry, resulting in large-amplitude deformation that is only
quasi-periodic (Mancktelow, 1999). Our results contrast with
the results of (Mancktelow, 1999). Even in our large-amplitude
initial perturbation simulations, long wavelength initial topog-
raphy is modified to reflect a single dominant wavelength. We
speculate that these differences result from the rather substan-
tial differences in the two model’s rheologies and experimental
setups.
The results described above provide significant support for
the tectonic resurfacing hypothesis. Our modeling indicates that
unstable extension can modify small scale (∼10 m or less),
random, preexisting topography and replace it, through the ac-
tion of necking, with moderate amplitude periodic ridges and
troughs. Large amplitude topography (∼100 m) is harder to
modify due to decreased growth rates at large deformation am-
plitudes. However, even with random preexisting topography of
100 m, extension produces strongly periodic deformation with
an amplitude of several hundred meters.

A number of important questions remain unaddressed by our
model. The ability of extensional tectonic deformation alone
to completely remove all evidence of the preexisting surface
remains unclear. Our results suggest that remnants of large-
amplitude, short-wavelength topography, such as crater rims,
can remain after groove formation occurs (Fig. 12G), yet ob-
servations have not revealed any such “ghost” craters within
the grooved terrain on Ganymede. Removal of such short-
wavelength topography most likely requires significant faulting
to break up and obscure the original terrain. Such faulting is not
included in this model. These results also provide little insight
into the cause of the grooved terrain’s high albedo. Suggestions
that tectonic deformation alone can brighten groove terrain by
exposing clean ice at the surface cannot be directly tested via
this approach, but the relatively low strains present in groove
crests (Fig. 6) suggests that, at least in those regions, surface
brightening must occur by some mechanism other than tectonic
deformation.

4. Sensitivity analysis

The simulations described above treat only the temperature
gradient, strain rate, and initial surface topography as free in-
put parameters. However, factors such as the elastic properties
of the lithosphere, the grain size of ice, the minimum yield
strength of the lithosphere, and the surface temperature can also
affect instability growth. We determined the sensitivity of our
results to variations in these parameters by fixing the model’s
temperature gradient at 15 K km−1, strain rate at 10−13 s−1,
and total strain at 31.5% and varying the parameters in ques-
tion. This analysis provides a more complete understanding of
how our results depend on model assumptions.

The elastic parameters of an icy lithosphere are poorly un-
derstood. Studies suggest that terrestrial lake and sea ice have
average Young’s Moduli of 9.3×109 Pa (Gammon et al., 1983).
This value is insensitive (±1%) to sample age, impurity con-
tent, and crystal quality (Gammon et al., 1983). We used a nom-
inal Young’s modulus of 1010 Pa, in agreement with this value.
A fractured lithosphere can experience larger strains at mod-
est stress than an unfractured lithosphere, and this is sometimes
modeled with an effective Young’s modulus several orders of
magnitude smaller than the actual value (Williams and Gree-
ley, 1998). Fig. 13A shows the effect of variations in Young’s
modulus on the total amount of amplification produced by the
necking instability. The amplification is relatively insensitive
to the exact value of the Young’s modulus over the nominal
range of 109–1010 Pa for intact ice, varying only by a factor
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Fig. 13. Amplification as a function of (A) Young’s modulus, (B) grain size, and (C) surface yield stress. Amplification (solid lines) and exponential growth rates
calculated after 3.15% extension (dashed lines) are also shown in (D). See text for description of results.
of 0.1. At values of Young’s modulus less than 109 Pa, however,
amplification falls off sharply, suggesting that, if Ganymede’s
lithosphere behaves as a fractured elastic plate, the growth of
necking instabilities may be inhibited. However, the applica-
bility of a model with an artificially reduced Young’s modulus
to a fractured lithosphere remains questionable because the ad-
ditional strain in a fractured plate is more properly modeled
with a brittle (i.e., plastic) rheology than with an artificially
compliant elastic system. Very large, if unrealistic, values of
Young’s modulus (1012 Pa) produce significantly more ampli-
fication than the nominal cases. This increase occurs because
large values of Young’s modulus permit the partitioning of
more strain into plastic, rather than viscoelastic, deformation.
Since necking due to plastic strain is significantly more efficient
than necking due to viscous or elastic strain (e.g., Smith, 1975;
Fletcher and Hallet, 1983), instability amplification increases.
The grain size of the ice within Ganymede’s lithosphere is
also poorly constrained. Because grain-size-sensitive GBS flow
dominates the viscous rheology of ice under the conditions con-
sidered in this model, the choice of grain size can strongly affect
the rheological behavior of ice [Eq. (3)]. In zones of high shear,
terrestrial sea ice has measured grain sizes of 1–7 mm (Budd
and Jacka, 1989). However, the cold surfaces of the Galilean
satellites may allow ice grains an order of magnitude smaller to
form near the surface. To examine the effect of grain size on our
results we compared simulations with grain sizes of 0.01, 0.1,
1, and 10 mm (Fig. 13B). These grain sizes were held spatially
and temporally constant throughout the simulation. Variations
in grain size over the nominal range (0.1–10 mm) generally do
not affect the amount of amplification produced by instability
growth. Thus increasing the grain size by an order of magni-
tude does not appear to sufficiently inhibit the GBS mechanism
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to affect the viscous flow at depth. At vary small grain sizes
(0.01 mm) amplification is enhanced by a factor of 1.7, suggest-
ing that, if small grain sizes exist in the lithosphere, unstable
extension may be enhanced.

Both temperature and stress affect grain size, which can
therefore vary spatially and temporally within the lithosphere.
Recent modeling of grain size variability in convective systems
on icy satellites has illustrated that heterogeneous distributions
of grain size not only occur, but directly affect the convective
flow (Barr and McKinnon, 2006; Tobie et al., 2006). High near-
surface stresses in our simulations favor production of small
grain sizes that can enhance strain rates and lead to strain weak-
ening within these zones. This method of strain localization has
been shown to be effective for olivine under certain terrestrial
conditions (Braun et al., 1999). On the other hand, a reduction
in instability growth can occur if high temperature gradients
create large-grained ice at depth, reducing the strength contrast
between the brittle surface layer and ductile substrate. A full
examination of the effects of heterogeneous grain size distribu-
tions exceeds the scope of this paper, but understanding its role
in instability growth warrants further investigation.

The yielding behavior of ice also strongly affects instabil-
ity growth. Previous modeling suggests that weak lithospheres
(lower yield strength) produce smaller growth rates than strong
lithospheres (higher yield strength) (Montési and Collins,
2005). The yield strength of our model lithosphere is given by
Eq. (5). Its dependence on a dependent variable (σm) makes it
difficult to define a minimum yield strength a priori. However,
we can determine the effect that varying the cohesion (which
strongly influences the minimum yield strength) has on our re-
sults.

Decreasing the cohesion from our nominal value of 10 MPa
(σyield ∼ 8 MPa at the surface) to 4.7 MPa (σyield ∼ 2 MPa at
the surface) decreases the total amount of amplification by 55%
(Fig. 13C). Decreasing the cohesion to even lower values re-
sults in unphysical (negative) values of yield strength for typ-
ical model stresses. If, as measured by Beeman et al. (1988),
the yield strength at the surface is 1.2 MPa, the formation of
grooves via unstable extension clearly becomes difficult. These
results indicate that, aside from the temperature gradient, strain
rate, and total strain, the value of the near surface yield strength
is the most important factor in influencing instability growth.
Thus the formation of grooved terrain via unstable extensional
processes suggests that either the lithosphere behaves relatively
strongly, or strain weakening and local heterogeneities can en-
hance the growth of necking instabilities.

The surface temperature (Ts ) can also affect instability
growth (Fig. 13D). While growth rates are insensitive to the sur-
face temperature for Ts between 70 and 100 K, simulations with
very high surface temperatures (Ts = 120 K) have infinitesi-
mal growth rates a factor of 2 smaller than low Ts simulations.
Also, because increasing the surface temperature effectively
decreases the thickness of the deforming layer, growth satu-
ration (described above) occurs earlier in simulations with high
surface temperatures than in simulations with low surface tem-
peratures. Thus despite the insensitivity of initial growth rates
to surface temperature, the total amount of amplification pro-
duced by extension decreases monotonically with increasing
surface temperature. We again suggest that if surface temper-
atures were ∼100 K or higher, the formation of the grooved
terrain via extensional necking requires significant strain weak-
ening or strain localization.

Finally, elucidating how gravitational relaxation, which is
naturally included in our model, affected the development of
large-scale grooves is essential to understanding the formation
of the grooved terrain, a process that may have taken millions
of years. Dombard and McKinnon (2006) calculated relaxation
timescales for impact craters on Ganymede and Callisto. Using
a rheology consistent with our models (although with warmer
surface temperatures), they found that, for a surface temperature
of 120 K and heat flows of 10 mW m−2, a 25 km crater will re-
lax by ∼10% in 107 yrs. In light of these results, we expect that
gravitational relaxation can affect the development of ∼10 km
wavelength grooves under conditions of low strain rates (long
formation timescales) and high heat flow. To test this, we im-
posed 100 m-amplitude, sinusoidal topography at the surface
of a domain with a temperature gradient of 30 K km−1. We
separately examined wavelengths of 2 and 10 km, roughly cor-
responding to the minimum and maximum groove wavelengths
produced by our models. The domains relaxed under gravity,
without being extended, for a period of 107 yrs. We then mea-
sured the differences in the horizontal and vertical position of
the surface nodes to determine the extent of the gravitational
relaxation. We find that negligible relaxation of groove-like
structures occurs after 10 million years; topography with wave-
lengths of 2 and 10 km changed in amplitude by only 1 and
6 m, respectively. We note that the application of tensile stress
may increase the rate at which relaxation occurs. Despite this
caveat, we conclude that gravitational relaxation plays an in-
significant role in necking instability growth. These results are
consistent with Dombard and McKinnon (2006) who noted that
when surface temperatures are low (80 K), viscus relaxation is
inhibited.

5. Implications and conclusion

Our simulations confirm that necking instabilities can oc-
cur under a broad range of conditions relevant to Ganymede.
At infinitesimal strains, we find that maximum instability
growth rates occur at high temperature gradients (�45 K km−1)
and moderate strain rates (10−13 s−1). Dominant wavelengths
range from 1.8–16.4 km (post extension), similar to the wave-
lengths of Ganymede’s grooves. These results are qualitatively
consistent with previous, linearized, infinitesimal-strain mod-
els (Dombard and McKinnon, 2001). We also find, however,
that nonlinearities play a crucial role in instability growth at
strains exceeding ∼10–20%. Instability growth rates decrease
as strains become large, limiting the total amount of amplifica-
tion that can result from unstable extension. Decline in growth
primarily results from the finite thickness of the deforming
lithosphere and the extension of the amplifying wavelength, and
hence occurs at lower groove amplitudes for high-temperature-
gradient, thin-lithosphere models, than for low-temperature-
gradient, thick-lithosphere models. This result implies that lin-
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ear extrapolation of initial growth rates overpredicts groove
heights for large strains. Understanding groove formation at
large strains therefore requires the use of finite-strain models.

The inclusion of large strains in the modeling of extensional
necking instabilities places new constraints on the formation of
Ganymede’s grooved terrain. Because instability growth does
not continue exponentially at finite strains, the high thermal
gradients (∼35 K km−1) required by linear infinitesimal-strain
models to produce large amplitude grooves are unnecessary.
Instead, thermal gradients as low as 10–20 K km−1 are pre-
ferred as long as large strains are locally available. This sug-
gests that the formation of grooved terrain required only modest
heat fluxes of ∼20 mW m−2, rather than the 75 mW m−2 pre-
dicted by linear models. Such a heat flux would almost certainly
have been available on Ganymede as the value falls well be-
low estimates of heat flux derived from the analysis of both
furrow systems within Ganymede’s dark terrain, and elastic
thicknesses near rift zones (McKinnon and Parmentier, 1986;
Nimmo et al., 2002).

In addition, we have shown that the formation of necking
instabilities can modify preexisting terrains of up to 100-m
topography, replacing them with moderate-amplitude, periodi-
cally spaced ridges and troughs. These structures are consistent
with Ganymede’s grooved terrain, although somewhat lower in
amplitude. These models provide an important step in quan-
titatively examining the role of tectonic resurfacing in groove
formation.

Our modeling also raises new difficulties for the necking in-
stability model. The use of a more realistic viscoelastic–plastic
rheology decreases the initial exponential growth rates by an
order of magnitude compared to the results of linear models.
These decreased growth rates combine with growth fall-off at
large strains to limit the total amplitude of deformation pro-
duced by unstable extension. No more than 8-fold amplification
of the initial perturbation occurred in any simulation after ap-
plication of 31.5% strain. Thus, if Ganymede’s pre-grooved
terrain consisted of ∼10 m amplitude topography, extension
would produce grooves with amplitudes of ∼80 m, a factor of
five smaller than is observed. If strains were typically less than
31.5%, the formation of Ganymede’s grooved terrain via un-
stable extension becomes even more difficult. Furthermore, the
inclusion of realistic near surface strength profiles, and warmer
surface temperatures may further curtail instability growth. We
therefore emphasize that forming grooved terrain via unstable
extension remains a difficult problem.

The challenges to groove formation may yet be overcome,
however, by the inclusion of strain localization mechanisms not
considered in the present model. The incorporation of strain or
strain-rate softening (i.e., a reduction in the cohesion or effec-
tive viscosity of material at high strains or strain-rates, respec-
tively) into numerical models of terrestrial extension strongly
affect the model results (Behn et al., 2002; Frederiksen and
Braun, 2001; Poliakov and Buck, 1998; Lavier et al., 2000).
Frederiksen and Braun (2001) demonstrated that strain soften-
ing in the Earth’s mantle leads to significant strain localization
for a range of assumptions about how softening occurs. Behn
et al. (2002) further showed that including strain-rate softening
in models of continental and oceanic rifting led to increases in
local strain rates by two orders of magnitude, which in turn led
to significantly more surface deformation than in models with-
out strain softening. The inclusion of these processes in our
model should have an analogous affect, significantly increas-
ing groove amplification. Furthermore, the presence of discrete
faults may also help localize strain. Montési and Collins (2005)
found that long-distance fault interactions in an icy lithosphere
could lead to structures similar to Ganymede’s grooved terrain.
Such fault interactions may help to focus strain within exten-
sional necks, and lock-in the amplifying wavelength, preventing
the fall-off in growth caused by the shifting wavelength of the
perturbation at large strains. The inclusion of these processes
appears to be essential to properly modeling groove formation.

The conditions that led to groove formation on Ganymede
are not unique in the Solar System. Evidence of extensional tec-
tonics abounds on the icy satellites of both Saturn and Uranus.
Our modeling of instability growth at finite strains suggests
that the production of significant topography, via unstable ex-
tension, does not require high thermal gradients. Furthermore,
the low surface temperatures and reduced surface gravity of
these small bodies permits higher instability growth rates than
on Ganymede (Herrick and Stevenson, 1990). Unstable exten-
sion may have therefore played a significant role in modifying
not only the surface of Ganymede but also the surfaces of icy
satellites such as Enceladus and Miranda.
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