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Multipath propagation of surface waves introduces distortions in waveforms
that can bias array measurements of phase velocities. We present a method for
array analysis of laterally and azimuthally varying phase velocities that represents
the incoming wavefield from each earthquake as the sum of two interfering plane
waves. This simple approximation successfully represents the amplitude and phase
variations for most earthquakes recorded in the MELT Experiment on the East
Pacific Rise in the period range from 16 to 67 s. The inversion for velocities
automatically reduces the importance of data from earthquakes or periods that
are not described well by this approximation. Each iteration in the inversion
involves two stages: a simulated annealing inversion for the best wave parameter
description of each event, and a linearized inversion for velocities and changes
in the wave parameters. At 29 s period, the two-plane-wave solutions indicate
that nearly every signal is significantly affected by multipathing. The larger of
the two plane waves typically has an apparent azimuth of propagation that is
within a few degrees of the great circle path. The smaller wave is more scattered,
differingin apparentazimuthfrom the largerwaveby an averageof about 13°
at 29 s. Both lateral and azimuthal variations in Rayleigh wave phase velocity in
the study area are significant, although it is possible to trade off azimuthal anisot-
ropy with rapid and probably unrealistic lateral variations in velocity. Apparent
azimuthal anisotropy reaches 5 to 6%, with the fast direction approximately
perpendicular to the ridge.

I. INTRODUCTION apparent direction of propagation assuming the incoming
wave is planar. Surface waves, however, encounter many
heterogeneities between the source and receivers that distort
the waves, causing deviations from great-circle azimuths
[Evernden, 1953; Alsina, et at., 1993; Laske, 1995], wave
interference effects sometimes described as multipathing
[Capon, 1970], and scattering [Snieder and Nolet, 1987].
Non-planar energy can dominate the signals for Rayleigh
waves at periods less than 50 s [Friederich et at., 1994].
Neglecting wave interferenceby selecting only those records
from an event that have a "clean" appearance can lead to
a systematic bias in the apparent phase velocity [Wielandt,

The measurement of phase velocities of surface waves
crossing an array of seismometers is a powerful way to
detect variations in lithospheric and asthenosphericstructure.
Traditional methods of array-analysis solve for slowness and
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1993] if the clean appearance stems from constructive inter-
ference of waves that have traveled different paths.

To overcome the inaccuracies in phase velocity determina-
tions caused by non-planar waves, Friederich and Wielandt
[1995] have developed a method that simultaneously solves
for phase velocity variations within an array and for the
structure of the incoming wavefield from each event. The
wavefields are represented by a set of basis functions in
the form of Hermite-Gaussian functions that describe the

perturbations from a plane wave. This elegant approach has
been successfully applied in studies of regional structure in
Germany [Friederich, 1998] and California [Pollitz, 1999].
There are, however, some practical difficulties that arise.
Given a finite number of stations, the wavefield solution is

non-unique [Wielandt, 1993] and must be constrained by an
additional condition, such as that the model wavefield have

the same total energy as is estimated from the observations
at the existing stations [Friederich et ai., 1994]. Even with
this condition, the inversions tend to put the maximum pre-
dicted amplitude variations in gaps between stations or out-
side the array (see examples in Figure II of Friederich
et ai., 1994); a typical problem with any orthogonal basis
function expansion with incomplete coverage.

Another problem is that many parameters may be needed
to represent relatively simple interference patterns of large
amplitude but unknown wavelength. With Hermite-Gaussian
expansion up to order twenty, 44 parameters are required to
describe the wavefield [Friederich et ai., 1994; Friederich,

1998] at any given frequency. With this large number of
wavefield parameters for each source event, it is not surpris-
ing that it is difficult to resolve the relatively small changes
in phase of the waves associated with variations in phase
velocity within the study area. The spatial pattern of phase
velocity variations seems to be robust in the joint inversions
for structure and wavefields, but the amplitude ofthe velocity
variations is highly dependent on the relative damping of
the wavefield and the velocity parameters [Friederich, 1998;
Pollitz, 1999].

Motivated by the relatively simple interference patterns
revealed by wavefield modeling with orthogonal basis func-
tions and by the need to find a more stable inversion with
fewer parameters for arrays with gaps between stations, we
have developed a procedure for joint inversion of velocity
and wavefield structure in which each incoming wavefield

is represented by the interference between two plane waves.
This approach reduces the number of wavefield parameters
for each event to six. In most cases, this representation

provides an adequate description of the amplitude variations
across an array. The procedure automatically reduces the
influence of events with more complex wavefields that are
not well-represented by this model of two-plane-wave inter-

ference. This approach is illustrated with an example of
Rayleigh waves propagating across the array of ocean-bot-
tom seismometers deployed in the MELT Experiment
[MELT Seismic Team, 1998; Forsyth et ai., 1998]. Shear
wave splitting [Wolfeand Solomon, 1998],seismic refraction
experiments [Raitt et ai., 1969], ophiolite samples [Chris-
tensen and Salisbury, 1979], and propagation of Rayleigh
and Love waves [Forsyth, 1975]all indicate that the oceanic
lithosphere should be anisotropic in the MELT study area.
Consequently, the two-dimensional structure in the inversion
includes terms for azimuthal anisotropy of phase velocity.
Other papers [Forsyth et al., 1998; MELT Seismic Team,
1998] describe more details of the experiment and discuss
the tectonic significance of the results. This paper focuses
on the two-plane-wave method of array analysis, which has
also been successfully applied in continental settings [Li et
ai., 2002, 2003; Weeraratne et ai., 2003].

2. DATA AND DATA ANALYSIS

To illustrate the method, we use Rayleigh wave data from
21 earthquakes recorded at ocean-bottom stations of the
MELT Experiment on the East Pacific Rise between Novem-
ber 1995 and May 1996. Sensors were either three-compo-
nent, I-Hz seismometers (model L4C, Mark Products) or
Cox-Webb [Cox et al., 1984] differential pressure gauges
(DPGs). The instruments came from four different instru-
ment pools with different recording and filtering operations,
so before analysis, all responses for seismometers and pres-
sure gauges were equalized to duplicate the response of
the seismometer type that produced the most abundant data
[Forsyth et ai., 1998]. Despite the short natural period of
the seismometers, in the stable thermal environment of the
seafloor, they yield reliable responses out to periods on
the order of 100 s. The DPGs were designed initially for
oceanographic purposes and have flat response to accelera-
tion out to periods of thousands of seconds [Cox et ai.,
1984], although at periods greater than 35 s, pressure varia-
tions from infra-gravity waves [Webb, 1998] in the 2700 to
3500 m water depths of the MELT Experiment increasingly
interfere with the recording of earthquake signals. The phase
responses of all the DPGs were well matched, but the abso-
lute gain varied somewhat from instrument to instrument,
so in the inversions described in later sections, terms were
added to find the best gain factor for each station. Stations
were deployed primarily in two lines across the axis (Plate
la), an arrangement intended to provide optimum resolution
for small features beneath the ridge for body wave tomogra-
phy, rather than optimum coverage for surface waves. An
average of 30 stations recorded each event with good signal-



Plate 1. (a) Location of MELT Experi-
ment seismic array on the East Pacific
Rise. Bathymetry is from Smithand Sand-
well [1997]. The spreading center is
marked by the narrow, axial high region
shallower than 2850 m, trending about
NI2°E. Open circles mark locations of
differential pressure gauges, open trian-
gles are three-component seismometers.
Small diamonds indicate grid of nodal
points used in the velocity models. Large,
open, squares indicate comers defining
edges of the region of interest; travel times
(text equation 5) are calculated from the
point where a wavefront, assumed to be
perpendicular to the great circle path for
this purpose, first encounters one of these
comers. Double red lines mark these
wavefront intersections with the comers
for an earthquake along the Kurile trench
(Plate Ib and Figure 5a and b) ap-
proaching from the northwest and an
earthquake off the coast of Oaxaca, Mex-
ico (Figure 5c and d) approaching from
the north-northeast. (b) Multipath interfer-
ence effects for the Kurile earthquake (Ms
7.1 at 2136 on 7 Feb. 1996) at 0.035 Hz.
At selected stations, chosen so that the
displayed seismograms do not overlap,
500 s records are plotted along a line in
the direction of great circle propagation.
Time increases away from the station
symbol. These records are generated by
narrow-passband filtering the original,
observed seismograms with comer fre-

quencies at 0.030 and 0.040 Hz. Colors indicate predicted amplitudes for two-plane wave representation found in inversion for velocity
model 4, Table I. Amplitudes are normalized to the maximum, observed amplitude for each event, hence the predicted amplitude can
exceed 1.0. To illustrate the two plane waves found in the solution, two of the peaks of the model, sinusoidal wavefields for the two plane
waves are shown as green, dashed and red, dotted lines, representing a spatial snapshot at the reference time for the event. One entire
wavelength is shown for each wave, although in the idealized, Fourier representation of a single frequency, the sinusoidal oscillations
extend across the entire area. Constructive interference occurs wherever the waves are in phase, as in lower left, and destructive interference
wherever the waves are out of phase, as along violet band striking diagonally across center of map. The strike of the interference pattern
is along the bisector of the two wavefronts, which in this case is nearly, but not exactly, along the great-circle direction.
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to-noise ratio, ranging from a minimum of 20 to a maximum
of 38 stations.

The amplitudes and phases of Rayleigh waves at selected
frequencies were determinedby Fourier analysis after instru-
ment correction, filtering and windowing the records. Fre-
quencies analyzed ranged from 15 to 60 mHz. A narrow
bandpass filter (4thorder Butterworth, zero-phase shift) cen-
tered at the frequency of interest with comer frequencies
separatedby 10mHz was applied to each record. The filtered
records were then windowed (boxcar with 50-s cosine tapers
on each end) to isolate the fundamental mode Rayleigh
wave from other phases. The width of the window varied
depending on the dispersion of the incoming wave around
that frequency, but the same frequency-dependent window
length was applied to all stations of the array. Amplitudes
were corrected for geometrical spreading on a sphericalearth
and differential attenuation. These corrections are relatively
minor, but significant across an array spanning 800 km. To
avoid an emphasis on earthquake size in the inversion, the
measured spectral amplitudes were normalized to unit RMS
amplitude for each event.

Earthquakes from around the Pacific rim were used as
sources (Figure 1). To facilitate separation of fundamental
mode Rayleigh waves from S phases, a minimum epicentral
distance of 3000 km was employed. The earthquakes were
chosen to be as well distributed in azimuth as possible, but
there is a substantial azimuthal gap, because no earthquakes
of sufficient size occurred to the south of the array during
the recording period. Nevertheless, the distribution of
sources and receivers yielded an excellent set of crossing
paths within and to the north of the array (Figure 2) that
provide the basis for tomographic imaging of the velocity
variations. Paths that traveled across ocean-continent bound-
aries or along island arcs were avoided as much as possible
to reduce the severity of multi-pathingor scattering [Frieder-
ich et ai., 1994]. The period range used for each event
depended on the magnitude of the earthquake and the nature
of the path. At short periods for more complex paths or paths
traveling across the deep water of the northwest Pacific,
Rayleigh waves were highly scattered and incoherent from
station to station; those periods for particular events were
discarded. Scattering in the northwest Pacific has previously
been described by Lerner-Lam and Park [1989]. Despite the
careful selection of events and period ranges, significant
interference and wavefield complexity remains that cannot
be ignored in phase velocity analysis. The interference can
be recognized in individual records in the form of nodes or
beats in thedispersed waveforms, or by systematic amplitude
variations across the array (Platelb). Some of the nodes or
amplitude minima may be associated with the excitation
function at the source; the effects of multipathing can be

Figure 1. Epicenters of earthquakes used as Rayleighwave sources
in this study. Projection is azimuthalequidistant centered on middle
of array, with distance in degrees noted by concentric circles.
Geometry of the array indicated by two short, parallel lines. Thin
lines mark plate boundaries. The two earthquakes far to the west
of the array in the Solomon and Banda Seas were useful only at
periods greater than 30s, at which multi-pathinginterference effects
are less severe.

extreme when the waves leave the source in a near nodal

direction where significant phase shifts in the interfering
waves can be introduced by small changes in azimuth.

3. FORWARD PROBLEM

3.1 Coordinate Systems

A local cartesian coordinate system is set up for each
earthquake source based on the epicenter and the location
of a reference station (Figure 3). The reference station is
established as the origin of the coordinate system, with the
+x direction in the direction of propagation along a great
circle path from the epicenter and the +y direction 90° coun-
terclockwise from the x direction. The x-coordinate is equal
to the difference between the epicentral distance at each
point and the epicentral distance to the reference station,
thus removing the curvature of the expected wavefront on
a uniform, spherical earth. The y-coordinate is defined as
the distance along a small-circle about the epicenter from
the point to the x-axis (the great-circle path through the
reference station). This earth-flattening coordinate system
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Figure 2. Great circle paths in the vicinity of the array used in the analysis at 0.035 Hz. Double line marks location
of plate boundary, circles and triangles the locations of instruments. Some tomographic control is possible wherever
there are crossing paths.

represents a compromise between (1) a mercator projection
centered about an axis about 90° from the study area, and
(2) a mercator projection centered on the epicenter. Option
(]) preserves the relative geometry of points within the study
area, but leaves the wavefront curved. Option (2) flattens
the wavefront and makes all great circle paths lie along the
x-direction, but distorts distances between points in the y-
direction. The coordinate system used in this paper flattens
the wavefront, but preserves distances between points better
than option (2), which is important because the waves may
not be approaching the array along a great circle path and
the interpolation scheme we use for phase velocity is based
on distances to fixed grid points.

Rather than describe variations in phase velocity in terms
of a set of orthogonal basis functions or a set of cells of
constant velocity, we use a continuous function that is a
weighted average of velocities at neighboring grid points.
The characteristic velocity at thejth grid point is azimuthally
anisotropic and given by

;'0 = Bo,j + Bl,j cos 2 ;(Jj + B1,j sin 2 ;(Jj (1)

where ;Bj is the backazimuth from the jth grid point to
the ith event in the original geographic coordinate system.
Higher order azimuthal terms are neglected as they are ex-
pected to be small for Rayleigh waves [Smith and Dahlen,

]973]. We use a 2-D Gaussian weighting function that has
a characteristic scale Lw.The phase slowness at every point
(x,y) in the medium, including at the grid points themselves,
is given by

N W. /
N

.S = "V...! !... ~.w-
I £.J £.ill

j=1 ;'0 j=l
(2)

where N is the number of grid points, the weights are
given by

and CXj,iYj)is the location of the jth gridpoint in the coordi-
nate system of the ith event. The weighting function acts as
an averaging or smoothing function, with Lwcontrolling the
length scale for variations in velocity of the medium. With
this approach, velocities are described everywhere, even
outside the actual grid of points employed, and will return
to the average velocity of the grid at infinite distance.

There is no absolute criterion for selecting Lw.As is usual
for this type of inverse problem, there is a tradeoff between
model resolution and model variance or between data misfit
and model length. Decreasing Lw increases the resolution,
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(X,y) or (r, 1jI)

- -
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Figure 3. A different coordinate system is employed for each
event. Upper diagram shows two great-circle paths from the epicen-
ter to stations in the array. x-coordinate is distance along great
circle path relative to distance to reference station (triangle). The
y-coordinateof any other point (circle) is distance along the perpen-
dicular, small-circle passing through that point to the great circle
path through the reference station. These coordinates are used as
Cartesian system for local analysis of phase velocities, converted
to localpolarcoordinates(r,ifJ)forconveniencein describinglocal

. direction of propagation e of an incoming plane wave (lower di-
agram).

allowing more details of velocity variations to be resolved
or represented, usually resulting in smaller data residuals,
but at the expense of greater amplitude, shorter wavelength,
perhaps unrealistic, oscillations in the velocity model that
have greater uncertainty. It is a choice between resolving
more with greater uncertainty and less with greater certainty
that must be made in the light of the particular tectonic
question that is being addressed by the tomographic study.

The actualgrid of points employed in this study is shownin
Plate la. There is no requirement that the points be regularly

-

spaced on a rectangular grid. Here we base our grid on the
natural coordinate system provided by the ridge, as it is
expected that the dominant variations in velocity will occur
as a function of the age of the seafloor. Points are regularly
spaced in latitude, but at each latitude, the center of the grid
is tied to the ridge axis, which makes it easy during the
inversion process to impose requirements such as that veloc-
ity vary only as a function of distance from the ridge. It is
important that the grid of points extend well-outside the area
of interest that will have well-resolved velocities constrained
by crossing paths; in the tomographic inversion, these outer
points "absorb" travel-time variations that represent addi-
tional deviations from the idealized two-plane wave repre-
sentation of the incoming wavefield. Describing the resolu-
tion of the tomographic inversion is easier if the grid points
are regularly spaced in the region of interest, but to reduce
the total number of variables in the inversion, we employ a
sparser grid in the outer, surrounding region. The total num-
ber of grid points in this model is 315.

3.2 Two-Plane-Wave Representation

At each frequency w for each event, the incoming wave
is regarded as the sum of two horizontally propagating plane
waves so that the vertical displacement is of the form

Uz(w) = Al (w) exp [-i(kl .x - wt)]
+ A2 (w) exp [-i(k2 .x - wt)] (3)

where k is the horizontal wavenumber of each wave and x

is the position vector. In practice, we describe the position
within the array relative to the reference station and use a
common reference origin time for all records of a single
event, so that the predicted displacement at the kth station
for the ith event at each frequency is simply

where

and

?cPl and? cP2are the phases of the first and second plane
waves at the reference station, 7T and? T are the travel times

along the great circle path from the edge of the study area
to the kth and reference stations, i{tl and i{t2are the angular



deviations from the great circle path of the first and second

waves, 7S is the average slowness, and the (x,y) coordinates
of the stations are described also in terms of polar coordinates
(r,1/1)centered on the reference station and oriented in terms

of the great circle path. The incoming wavefield at each

frequency is thus described by six parameters; the amplitude,
reference phase and direction of each of two waves. The

directions and relative phases of the two waves are illustrated

in Plate Ib for one of the earthquakes of this study by plotting

peaks of the two sinusoidal oscillations for one frequency
at one instant, the reference time. Wherever the waves are

in phase, they will add constructively, and where they are

out of phase, they will interfere destructively, producing a

characteristic interference pattern that varies slowly in space.
The travel times are found by integrating along the great

circle path (x-direction) from the edge of the study area to

each station. The edge is defined by the planar wavefront
perpendicular to the great circle path, i.e. constant value

jXedgein the coordinate system for each event, at the point
where the wavefront intersects one of the specified comers
of the study area (Plate la). Thus,

In the correction for deviations from a great circle path
(second terms in the expressions for phase in equation 4),
the average slowness is defined as

Both the average slowness and the travel times for each path
are functions of the velocity coefficients at all grid points
as defined by the Gaussian averaging functions, although
of course the points nearest the great circle ray path are
most heavily weighted. The expressions for phase are exact
in Cartesian coordinates if the waves lie along the great
circle path or if the velocity in the medium is uniform, but if
the waves deviate from a great circle path in a heterogeneous
medium, the second term in these expressions for phase
provides only a first order correction. This approximation
is justified because, as will be shown later, deviations from
a great circle path are small and typical velocity variations
are only a few percent.
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4. INVERSE PROBLEM

Solution of the inverse problem for the wave parameters
and velocity parameters is accomplished through two sets
of iterations with two stages of inversion in each iteration.
Rather than trying to match the observations in terms of
normalized amplitude and phase, we choose to minimize
misfit to the real and imaginary components. This approach
has the advantage that misfits in phase have little importance
at those stations where destructive interference causes low
amplitudes and rapid phase fluctuations; a satisfactory fit is
found if the predicted real and imaginary components are
both small, regardless of phase. To begin the inversion, the
station with the largest amplitude is chosen as the reference
station, because the two plane waves are most likely to
be in phase at that station and the amplitude should be
representative of the sum of the amplitude of the two waves.
Observed amplitudes at other stations are normalized by the
reference station amplitude and phase, and the phases of the
two plane waves in the starting model are set to zero at this
point (but are not fixed during the inversion). With 6 wave
parameters required to describe the incoming wavefield for
e~chevent and 2 pieces of information per station (amplitude
and phase or real and imaginary component), a minimum
of four stations per event is required to have any information
about the velocity structure. In practice, a local array of 5
or 6 stations yields reasonable results with a measure of
uncertainty, but clearly better results are obtained with more
stations.

In the first stage of each iteration, the velocity model is
fixed either with starting values or with the current values
found in the previous iteration. In this stage, we find the
best fitting wave parameters in a least squares sense using
a downhill simplex method of simulated annealing [po444,
Press et at., 1992].We found that this stage was necessary,
because the combination of the periodic non-linearity of the
problem and the ambiguity in the solution if the two plane
waves have similar azimuth makes it very difficult to achieve
global minimization of the objective function with standard
linearized inversion techniques. With the velocityfixed, each
event is independent, so we perform a separate simulated
annealing search for the 6 wave parameters for each event.
To insure (almost always) that a global minimum is found,
we start the simulated annealing in each iteration for each
event with several different wave-parameter models, one of
which is the best model from the previous iteration.

In the second stage of each iteration, we use a standard
linearized inversion technique [Tarantolaand Valette, 1982]
to solve simultaneouslyfor corrections to the current velocity
model (values of velocity and azimuthal anisotropy at the

k
ix

77 = f iSdx (5)

i x edge
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grid points) and wave parameters for each event. The solu-
tion to the general non-linear least-squares problem is

where m is the current model, mo is the original starting
model, dm is the change to the model, dd is the difference
between the observed and predicted data for the current
model, G is the partial derivative or sensitivity matrix relat-
ing predictedchangesin d to perturbationsin m, and Cnn

and Cmmare the apriori data and model covariance matrices,
respectively. The observed data are the real and imaginary
components at a single frequency (we invert each frequency
independently) for each of the filtered and windowed
seismograms. In the examples discussed later at 0.035 Hz,
we have 629 seismograms from 21 earthquakes, or 1258
observations (real and imaginary from each record). The
predicted data are functions of the wave parameters and
the velocity parameters at the nodes or grid points, which
translate to integrals of the weighting functions along the
great circle paths. The velocity and wave parameters together
make up m. With Bo, BJ and B2 at each of 315 nodes
and 126 wavefield parameters there are potentially 1071
parameters, leading to non-unique or underdetermined
model solutions. In addition, there may be other parameters
such as the DPG gains or an attenuation coefficient. In the
terminology of Menke [1984], it is a mixed determined
problem. It is overdetermined in the sense that there are
more observations than model parameters, but it is underde-
termined in the sense that not all the model parameters are
well resolved.

Regularization or damping of underdetermined solutions
is achieved by introducing diagonal and off-diagonal terms
into C-r:rn.We use either a minimum length criterion em-
ploying diagonal terms only [Marquardt, 1970], or both
minimum length and a smoothing criterion using off-diago-
nal terms also [Constable et al., 1987]. For the minimum
length criterion, we employ uniform variance for points in
the interior of the grid. We increase the variance for points
on the edge of the grid by a factor of 10 so that these
essentially undamped values can "absorb" travel-time devi-
ations from the two-plane-wave model without introducing
unnecessary velocity variations into the interior area of inter-
est. Only very light damping is applied to the wave parameter
terms so that analysis of the uncertainty or resolution of the
velocity model will include full trade-offs with the wave
parameter terms. Table I indicates what we mean by light
damping; the difference between the total rank and the veloc-
ity rank is the number of independent combinations of wave-
field parameters that are resolved, which range from 94 to
97% of the total of 126 wavefield parameters. Starting mod-

els for the wave parameters are from the simulated annealing
inversions in the previous stage and the m -moterms (equa-
tion 7) penalizing changes from the original starting model
are dropped for the wave parameters.

When the smoothing criterion is applied, the inversion
minimizes the 2D second derivative for velocities [Maurer
et aI., 1998] in the interior of the grid and the first derivative
at the edges. For simplicity, we use the same variance (or
weight) for the diagonal component of Cmm in the smoothing
criterion as for the minimum length criterion, although
clearly one could choose to vary the relative importance
assigned to these regularization criteria. No smoothing is
used for the wave parameter terms.

In the first set of iterations, all the observations are as-
signed equal variance. The data covariance matrix is as-
sumed to be diagonal. Experience shows that a typical misfit
to the normalized real and imaginary terms is on the order
of 0.1, which we chose as the initial, a priori estimate of
standard deviation in the first set. Typically, after 4 or 5
iterations, no further significant changes in velocity occur,
although minor fluctuations in the model continue with fur-
ther iterations due to the small random variations in wave

parameters introduced in the simulated annealing steps. We
usually terminate the inversion after 10 iterations. At that
point, we estimate the a posteriori standard deviation of
the data from each individual earthquake. Because some
earthquakes have better signal-to-noise ratios than others
and the wavefield from some earthquakes at some periods
may not be well-described by the two-plane-wave model,
there is a wide variation in how well the observations from
different earthquakes are fit. The dominant source of vari-
ance in the original data is the deviation from the ideal plane
wave character. If this deviation is not well-described by
our simple representation of the incoming wavefield, we do
not want the poor wavefield model to bias the velocity
model. Therefore, in the second set of iterations, we assign
a priori standard deviations to the observations based on
the a posteriori standard deviations found for each earth-
quake after the first set of iterations. Our experiments indi-
cate that with this scheme, eliminating one or two events
with large residuals has little effect on the velocity model.

Our inversions are based on least squares minimization
which implicitly assumes a Gaussian distribution of errors.
We find no a posterior evidence in the form of an excess
number of outliers in the residuals to individual events that
would indicate a violation of this assumption, provided that
the data have been carefully cleaned to avoid processing
errors, glitches in the data, and noisy records. After the
initial inversions, we routinely reexamine the data for any
event with large residuals. If we identify clear problems, we
either correct the error or eliminate that record if we had



inadvertently accepted data with poor signal-to-noise ratio.
If there is no obvious cause for the large residual, we leave
the poorly fitting data in the analysis.

The renormalization of standard deviations changes the
weight assigned to each earthquake based on the result of
the first inversion. As a result, there is no one measure
available to straightforwardly compare the quality of fit of
different velocity models; every inversion of the same data
with different model parameters or smoothing length or
damping parameters will have somewhat different weights
assigned to the data. Because the weights or standard devia-
tions are different, we cannot directly point to the reduction
in variance to describe how much better one model is than

another in fitting the data. Because renormalization reassigns
standard deviations based on how well each model fits the
data, each model will tend to fit equally well in terms of
minimizing the final objective function, i.e., the square of
the ratios of the misfits to the standard deviations renormal-
ized after the first set of iterations. This is a small price to
pay for an inversion method that is insensitive to bad data
or poor fits to one or two earthquakes. We can provide
approximate descriptions of the quality of fit by removing
the renormalization in a variety of ways at the end of the
process.

We employ three approximate descriptions of quality of
fit to the data (Table I): the root-mean-square (rms) misfit
in terms of real and imaginary components, unnormalized
by multiplying by the standard deviations for each event as
used in the second set of iterations; the rms phase misfit
converted to equivalent seconds, based on all stations and
events; and the median rms misfit in phase for an individual
earthquake source. The first of these measures is closest to
representing our actual minimization that is performed on
real and imaginary components rather than phase and ampli-
tude. The second represents the misfits that are most directly

related to travel times and the velocity structure. Both of
these measures, however, are sensitive to one or two poorly
fit events that are given little weight in the renormalized,
final set of iterations. The median rms phase misfit is more
representative of the effect of renormalization, as it charac-
terizes the "typical" event that is given intermediate weight
in the inversion.

5. TWO-PLANE-WAVE SOLUTIONS

The solutions for relative amplitudes of the two plane
waves for each earthquake demonstrate that wavefield com-
plexity or interference is the dominant source of variance
in travel times or phase from the simplest model of a plane
wave propagating across a region of uniform velocity. If the
ratio of the amplitude of the second, smaller plane wave to
the first, larger wave is Rw, then the maximum possible
phaseshift 'Y introduced by the second wave is sin') Rw.If
the phase shift throughout the study area is approximately
random, then the expected root-mean-square (rms) time de-
viation is approximately T'Y/(23/21f),where T is the period
of the wave. Figure 4 shows the distribution of Rwfor two
frequencies. These ratios are taken from solutions in which
the phase velocity is 2-D and anisotropic, model 4 in Table
l. At 0.035 Hz or 28.6 s, roughly in the middle of our useful
frequency range, seven of 21 events have Rw > 0.5. The
median ratio is 0.28, which corresponds to an expected rms
scatter of 0.91 s in travel-time at 0.035 Hz. In contrast, in
the simultaneous solution for wave parameters and velocity
variations, the median rms misfit in phase at this frequency
corresponds to 0.42 s. If the velocity is assumed to be uni-
form, the median misfit is 0.76 s after solving for the best
velocity and wavefield parameters (Table 1). Thus, wave-
field complexity is expected to be a greater contributor to
variance than either velocity variations or noise (given our
selection of high-quality signals).
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Table 1. Velocitv Models Used in Inversions at 0.035 Hz.

RMS Median
Velocity Averaging Total Velocity RMS Misfit Phase RMS

Model Variations Len th Dam in Rank Rank Real&lma Misfit Misfit
uniform 65 km 123.6 1.0 .119 .95 s .76 s
isotropic

2 uniform 65 km 123.8 3.0 .114 .90 s .74 s
anisotropic

3 I-D 65 km min length 138.4 16.8 .087 .65 s .57 s
isotropic smoothing

4 2-D & 65 km min length 219.2 101.0 .075 .51 s .42 s
I-D aniso smoothing

5 2-D 50 km min length 255.5 133.2 .075 .51 s .42 s
isotroDic
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Figure 4. Amplitude ratios of the smaller of the two plane waves to the larger. Solutions from model 4, Table 1. (a)
0.035 Hz and (b) 0.025 Hz. Note that typical ratio decreases with decreasing frequency, indicating decreasing effect
of multipathing.

At 0.035 Hz, virtually every event deviates significantly
from a plane wave, despite the simplicity of the paths that
are confined almost entirely to the Pacific basin. Figure 5
illustrates the details of fits for two events at this frequency.
The Kurile earthquake has the largest amplitude variations,
roughly an order of magnitude difference between the
largest and smallest records (Plate lb). The great-circle
paths from this event traverse the deep water of the
northwest Pacific and pass close to the Hawaiian hotspot.
Despite the large variations, the interference pattern is
relatively simple and the two-plane-wave model fits the
observed amplitudes well with an Rw of 0.87 (Plate Ib
and 5a). This event also has the largest rms deviations
(1.09 s) between observed and predicted phase of any of
the sources at this period. The phase misfits, however,
stem largely from stations where destructive interference
is occurring and the amplitudes are small (Figure 5b). At
these stations, slight deviations from the model cause large
phase shifts. It is important to keep these stations in the
inversion, however, because their amplitudes constrain the
wavefield parameters. No damage is done to the velocity
model by inclusion of these stations, because there is no
direct penalty in the least squares minimization for phase
misfit; we minimize the real and imaginary component
misfits, which are well satisfied by the modeled low
amplitudes. The quality of overall fit for this event is
average as measured by the rms misfit of real and imaginary
components.

A more typical source at 0.035 Hz is the Oaxaca earth-

quake. It shows amplitude variations of about a factor of 2
(Figure 5c) and is characterized by an Rwof 0.27, compared
to the median value of 0.28. These amplitude variations are
well-resolved and the phases are extremely well-fit at all
stations (Figure 5d). The limit of resolution of Rwfor this
data set is about 0.1, corresponding to amplitude variations
of +/- 10% and rms phase variations of about 0.3 s. At
shorter periods, scattering becomes more severe,particularly
for events from the western Pacific traversing regions where
the short periods are sensitive to the thick water layer and are
highly dispersed. The spectrum of Rwfor events employedin
the inversion, however, is not much different than at 0.035
Hz because we discard highly scattered arrivals. At 0.06 Hz,
the median value of Rwis 0.31, but 6 of the 21 events were
rejected. At longer periods, wavefield complexity is reduced
[Friederich et af., 1994]. At 40 s period, the median value
of Rwis 0.19, which means that significant improvement in
fit is obtained by using two plane waves for about half of
the events. Thus, as expected, the degree of scattering or
multipathing decreases with increasing period.

It is probably not realistic to interpret the two plane wave
solutions literally as they are intended to be approximations
to a more realistic and more complicated wavefield. Never-
theless, it is interesting to examine the character of the
interference pattern implied by the solutions. The intensity
of the interference is controlled by the amplitude ratio. The
interference pattern consists of alternating maxima and min-
ima aligned along a direction that is the bisector of the
normals to the two wavefronts, typically nearly aligned in the
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Figure 5. Comparison of observed and predicted (a) amplitudes and (b) phases for the Kurile event at 0.035 Hz and
the observed and predicted (c) amplitudes and (d) phases for the Oaxaca earthquake (Ms 7.0 at 0308 on 25 Feb. 1996).
Scatter appears to be least at intermediate amplitudes, because many of the intermediate values happen to come from
the very closely spaced stations near the center of the southern line of the array (Plate 1b). In (b), phases from stations
with observed amplitudes less than 0.2 are shown with open symbols. Note decreased accuracy of predicted phases
for these stations with maximum, destructive interference.
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great circle propagation direction (Plate Ib). The wavelength
between maxima is controlled by the angle separating the
two normals, 13,and is given by

AI = cT cos f3/2
sin /3

(8)

where c is the phase velocity of the plane waves (assumed
to be equal for both). In the example given above for the
Kurile earthquake at 0.035 Hz, the direction of propagation
of the larger plane wave is 0.45° counter-clockwise (-) from
the great circle path and the direction of the smaller wave
is 3.98° clockwise (+). For the Oaxaca event, the primary
wave is +3.85° and the smaller is -1.64°. All but one of the
21 primary waves at 0.035 Hz lie within 5° of the great
circle path (Figure 6a). The secondary waves are more scat-
tered and the scatter is greater the smaller the secondary
wave (Figure 6b). All of the secondary waves for events
with Rw> 0.5 lie within 12° of the great circle path. Of the
six secondary waves that deviate by more than )20, four
have Rw < 0.25. In most cases, the interference pattern is
aligned within a few degrees of the great circle path, similar
to the trends found in Germany using the more complicated
basis function expansions of wavefields [Friederich et al.,
1994; Friederich, 1998]. The mean difference in angle be-
tween the two waves is 12.8°, the median is 7.6°, and the
maximum is 35.4°, corresponding to AIbetween interference
maxima of about 490, 820, and 180 km, respectively. Thus,

a. PrimaryWave .035Hz
7

o
-10 o s

degrees

.s

Deviation from Great Circle

although there are substantial variations, the typical scale
of interference we detect is on the order of the maximum

dimension of the array. This result is not surprising, because
interference on much smaller wavelength scale would lead
to rejection of the data as being incoherent from station to
station and interference at much larger wavelengths would
be difficult to resolve.

One of the common questions we have received from
others who have used this method for their data sets is "How

do you know when the two-plane-wave method will help?"
We also have received skeptical comments such as "It works
in the Pacific because the paths are so simple, but it won't
work in my study area" and "What about other effects on
amplitude, such as attenuation, radiation pattern and focus-
ing/defocusing due to 3D structure?". Using the two-plane-
wave method as opposed to the usual single plane wave
method never hurts; if a single plane wave is an adequate
representation, then the model finds a solution that is equiva-
lent. The two-plane-wave method is most effective in the
transition period range between a simple, planar wavefront
and incoherent scattering. If, in examining the filtered, nar-
row-bandpass records from the array the amplitude is highly
variable between adjacent stations or there are more than
two beats in the bandpassed seismogram, then two planes
waves will probably not provide a good representation of
the scattering. The orthogonal polynomial approach of Fried-
erich and Wielandt [1995] is effectively a multi-plane-wave
representation of the incoming wavefield [Pollitz, 1999],

10 -30 .20 .10 o 10 20 30 40

Deviation from Great Circle degrees

Figure 6. Distribution of differences between azimuths of the model plane waves and the great circle direction at
0.035 Hz. (a) Azimuths of the waves with the larger amplitudes of the pair for each event typically vary only a few
degrees from the great circle direction. (b) Azimuths of the smaller waves are more scattered than the larger wave and
scatter increases with decreasing amplitude ratio of the smaller to the larger. Note change in scale from lefthand plot.
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but, unless there is a very high density of stations in a 2-D
array, we find there is a rapid transition with decreasing
period between the case where two-plane waves is an ade-
quate description and highly incoherent scattering.

This approach has proved to be useful for arrays in a
variety of settings, including Tanzania, New England, and
Colorado. The complexity of paths to the arrayjust changes
the relative amplitudes of the two plane waves and theperiod
of the transition to incoherent scattering. The radiation pat-
tern is relatively unimportant as long as the dimensions of
the array are much less than the distance to the source, so
that range of azimuths from source to receiver is small. In
this study, the range of azimuths is typically about 3 degrees.
Attenuation is a minor effect across a small array, but we
have performed inversions in which we solve for attenuation
coefficients. As we will report in another paper, typical Q
for Rayleigh waves in the MELT study area is about 80.
Focusing and defocusing inside the array can have a bigger
effect. We are incorporating into the method amplitude and
phase response kernels for each of the plane waves to repre-
sent the internal scattering effects. Of course, the whole
point of using two plane waves is to approximately represent
the scattering effects of unknown 3-D structure outside
the array.

6. PHASE VELOCITY SOLUTIONS

To explore the information contained in the data about
the variations in phase velocity, we have performed a large
set of inversions with different degrees of complexity al-
lowed in the velocity model. Models range from constant
velocity throughout the study area to 1-D variations that are
a function only of distance from the ridge to 2-D variations
in both isotropic velocity and azimuthal anisotropy. Within
the models allowing lateral variations, resolution can be
controlled by varying the averaging length Lwor by adjusting
the a priori model covariance. For all the models summa-
rized in Table I, we employed an a priori model standard
deviation of velocities at the grid points of 0.2 kmls for both
Boand the anisotropy terms B) and B2.This choice stabilizes
the inversion, but is not very restrictive as the standard
deviation is equal to or larger than the deviations from the
mean velocity at each period within the well-resolved part
of the grid inside the array. Increasing the standard deviation
beyond this level makes little difference in the amplitude of
the velocity variations for our particular problem and choices
of Lw, but decreasing it dampens the velocity variations.
With this choice, resolution is determined primarily by Lw.

Resolving power can be briefly summarized by the rank
of the problem, equivalent to the number of pieces of infor-
mation extracted from the data. The rank can be estimated
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by summing the diagonal elements of the resolution matrix
R, defined by

The contribution to the rank from the velocity terms can be
summed separately from the wave parameters; both the total
rank and the rank from the velocity terms are listed in Table
1. The rank from the wave parameters in this linearized
inversion is nearly independent of the rank from velocity
terms and typically about 97% of 6N, where N is the number
of earthquakes. In addition, the wave parameters are uncon-
strained in the simulated annealing stage. Thus, the light
damping of these parameters has essentially no effect on the
velocity solution and the linearizeddescriptions of resolution
and variance of the velocity solutions include nearly the
complete tradeoff with wave parameters.

The inversions in Table 1 do not include the gains of the
DPGs as variables. These inversions are for a single period,
but the gain is best estimated from all periods. The approach
we use is to solve for the gain factors in an initial inversion
equivalent to model I with uniform velocity and wave pa-
rameters. We then find the weighted average of the gain
factors at all periods for each station and apply them as
station corrections before redoing all the inversions.

The simplest models are those with constant velocity
throughout the area. If no azimuthal anisotropy is allowed,
the average velocity Bo at 0.035 Hz is 3.758 ::t:.004 kmls
(modell, Table I). Adding 28 terms reduces all three mea-
sures of misfit (model 2, Table 1), yielding estimates Bo =
3.736::t: .006, BI = -0.067 ::t:.007, and B2 =-0.021 ::t:.006
kmls. The peak-to-peak variation in velocity with azimuth
is nearly 4% with the fast direction orthogonal to the ridge
axis. The direction is in agreement with that inferred for
young sea floor on the East Pacific Rise in previous studies
of Rayleigh wave anisotropy using long paths to land stations
[Forsyth, 1975; Nishimura and Forsyth, 1988; Montagner
and Tanimoto, 1990; Laske and Masters, 1998; Larson et
aI., 1998], but the amplitude is about twice the estimate
from those previous studies. It also agrees well with the
direction found for shear wave splitting in the MELT Experi-
ment [Wolfe and Solomon, 1998]. In tomographic studies,
it is often assumed that neglecting azimuthal anisotropy will
cause no significant bias in the isotropic model, because the
paths are sufficiently distributed in azimuth to average out
these effects. Here we find that the change in Bo caused by
introducing azimuthal terms is small, but significant at the
99% confidence level.

The uniform velocity model is used as a starting model
for an inversion in which azimuthal anisotropy is neglected
and Bo is allowed to vary only as a function of distance
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from the spreading center. Given the design of the grid, we
find the velocities by simplycollecting the partial derivatives
from all points at common distances from the ridge axis and
reducing the number of velocity variables to the 21 sets of
these points (Plate la), but it could also be done by introduc-
ing off-diagonal terms into Cmmthat force perfect correlation
between grid points sharing a common distance. The im-
provement in fit achieved by introducing these lateral varia-
tions (model 3, Table I) is much greater than that achieved
by the introducing the uniform anisotropic terms. In this
setting, we expected that the variation in velocity would
be dominated by the effects of the cooling of the oceanic
lithosphere as a function of the age of the seafloor. This
expectation is largely confirmed by the large velocity varia-
tions (Plate 2a) and large reduction in data variance found
for this model compared to model 2 (Table I). The minimum
in velocity is offset somewhat from the ridge axis and the
gradients are asymmetric, leading to higher velocities to the
east, on the Nazca plate side of the East Pacific Rise. These
asymmetries are discussed more thoroughly in Forsyth et
al. [1998]. The pattern is similar to that found at longer
periods and greater distance scales by Ekstrom et al. [1997].

Maps of phase velocities are constructed using the same
Gaussian weighting function of neighboring grid points
(Equation 2) as employed in the inversion. Thus each point
on the map represents a tapered average of phase velocities
in the surrounding region, but this value is an accurate repre-
sentation of velocities actually assumed in the inversion
rather than a smoothed or filtered version of velocities in

cells. Uncertainties in the maps are described by the variance
of the weighted averages found by linear error propagation
[Clifford, 1975] and given by

(10)

where q is the vector of weights for all the grid points for
a particular position and CMMis the complete, a posteriori,
model covariance matrix

(11)

where we have extracted the elements dependent on velocity
only. It is important to use the complete covariance matrix
in the sense of including off-diagonal terms, because the
weighted averages are much better known than would be
inferred from the diagonal variance terms alone. Typically,
there is a large, negative covariance between adjacent grid
points; their individual values may not be well-constrained,
but their sum is. When we combine grid points, as in model
3, we still use the Gaussian weighting functions to generate
the maps and equation 10 to estimate the uncertainties, ex-

cept in this case there is a perfect positive correlation be-
tween combined points represented in CMM.

The isotropic solution with velocities dependent on dis-
tance from the axis is employed as the starting model for
models with 2-D variations. Model 4 (Plate 2c and Table
I) allows 2-D variations in Bo,but the azimuthal anisotropy
terms are allowed to vary only with distance from the axis.
The characteristic averaging length Lw is 65 km and both
minimum length and smoothing conditions are applied.As is
well known, minimum length solutions tend to be oscillatory.
The smoothing criterion alone tends to project or continue
linear variations in well-constrained parts of the map into
less well-constrained parts. Applying a combination of both
criteria seems to minimize the appearanceofthese undesired,
unresolved artifacts in the inversion. The map of variance
in Bo (Plate 2d) indicates that some of the along-axis varia-
tions in velocity are significant (exceed two standard devia-
tions), but the dominant effect is still variations with distance
from the axis. Note that there is some resolution outside the
array, particularly to the north where there are many crossing
paths (Figure 2). As expected, the best resolution is inside
the array where there is a high density of stations and cross-
ing paths. The fit to the data with this model is remarkably
good, with typical misfits in phase on the order of O.4sor
about 1/70th of a cycle.

The average azimuthal anisotropy in model 4 is similar
to that found in the uniform velocity model, but there is a
minimum at orjust to the east of the axis that is well resolved.
Maximum anisotropy is about 5 to 6%. We can construct
models in which anisotropy is allowed to vary along-axis
as well, but we find that the uncertainty in the inversion is
too large to be useful unless Lw is increased to the point
where only one value is resolved across the along-axis di-
mension of the array.

A more critical issue than resolving 2-D variations in
anisotropy is resolving whether azimuthal anisotropy is re-
quired at all. As has been pointed out many times previously,
travel times or phase shifts caused by anisotropy can always
be matched by a model of lateral heterogeneities if the varia-
tions are sufficiently strong and small-enough in scale. In
this case, data from the MELT array forces a reduction in
scale of the needed heterogeneity by at least an order of
magnitude from previous regional or global studies, yet the
fast direction is consistent with those studiesand the apparent
degree of azimuthal anisotropy is greater. In addition, the
fast direction inferred from the Rayleigh waves agrees with
shear wave splitting measurements at the same stations
[Wolfe and Solomon, 1998] and the direction expected for
simple geodynamic models of the spreading process [Black-
man et al., 1996]. Nevertheless, a laterally heterogeneous,
isotropic model can satisfy the observations just as well as
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Plate 2. (a) Rayleigh wave phase velocity Bo at 0.035 Hz
assuming velocity varies only with distance from the ridge
axis (Model 3. Table I). Contour interval at om km/s,
color interval at 0,02 km/s (b) Uncertainty of the solution
representedin terms of contours of twice the standarddevia-
tion of Bo.Significant variations in velocity in (a) correspond
to approximately these values. (c) Rayleigh wave phase
velocity at 0.035 Hz assuming BI and B2 terms representing
azimuthal anisotropy vary only with distance from the ridge
axis (Model 4, Table I). Bo is free to vary in two-dimensions.
Contour interval for Bo at 0.01 km/s, color interval at 0.02
km/s. Direction of short lines indicates fast direction of

propagation, length is proportional to degree of azimuthal
anisotropy. (d) Uncertainty of the solution represented in
terms of contours of twice the standard deviation of Bo,
Note that this measureof model variance is closely related
to density of crossing lines (Figure 2). (e) Rayleigh wave
phasevelocity at0.035 Hz assuming no azimuthal anisotropy
and that Bo is free to vary in two-dimensions (Model 5,
Table I). Contour interval for Bo at 0.0I km/s, color interval
at 0.02 km/s. In comparison to Model 4 in Plate 2c, the
averaging length is shorter and the damping is relaxed by
removing the smoothing condition, (f) Uncertainty of the
solution represented in terms of contours of twice the stan-
dard deviation of Bo. Note the increase in model variance
compared to Model 4.
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model 4. Reducing Lwto 50 km and removing the smoothing
constraint yields a 2-D model (Plate 2e) with nearly identical
measures of misfit (modelS, Table 1). As is typical of such
solutions, more parameters are required for the isotropic fit
to match the anisotropic fit; the rank is increased by 32.

Averaging over smaller areas increases the variance of
the mapped phase velocities (compare Plate 2f to Plate 2d)
and introduces many short-wavelength oscillations between
stations. If the array had been optimally designed for surface
wave analysis with stations more randomly distributed in
the study area, the scale of heterogeneity needed to match
the anisotropic inversion could have been further reduced,
but it would still have been possible to generate such a
model. The scale of the heterogeneities required to mimic the
effects of anisotropy in this study (Plate 2e) are substantially
smaller than the typical width of the Fresnel zone for the
wavelength ofthe Rayleigh waves and the scale of the exper-
iment. Thus, it is highly unlikely that these short-wavelength
fluctuations are real, and, applying Occam's razor, we
strongly prefer the azimuthally anisotropic solution and con-
clude that there is an average of about 4% variation in phase
velocity with direction in the vicinity of the East Pacific Rise.

7. CONCLUSIONS

Variations in surface wave amplitudes and phases caused
by multipath propagation through heterogeneities often ex-
hibit a relative simple pattern across an array of stations that
can be satisfactorily described by the interference of two
plane waves. We have developed a tomographic imaging
method for phase velocities in the vicinity of an array of
stations in which the velocity field is represented by a
Gaussian weighting function of values at a set of grid points
and the incoming wavefield from each source event is repre-
sented by the amplitude, phase and direction of two plane
waves. For simple paths that lie primarily within the Pacific
basin, the apparent azimuth of the larger of the two plane
waves is typically within a few degrees of the great circle
path. There is a wide variation in apparent relative ampli-
tudes of the two plane waves, although usually interference
effects are stronger and the amplitudes more nearly equal
at shorter periods. Typically, the characteristic wavelength
of the interference pattern is on the order of several hundred
kilometers and the pattern is approximately aligned along
the great circle path. Near the East Pacific Rise, the phase
velocities of Rayleigh waves vary rapidly with distance from
the ridge axis and azimuthal anisotropy reaches a maximum
of 5 to 6%.
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