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It has been demonstrated experimentally and theoretically that an estimate of the Green’s function
between two receivers can be obtained from the time derivative of the long-time average ambient
noise function cross-correlation function between these two receivers. The emergence rate of the
deterministic coherent arrival times of the cross-correlation function, which yield an estimate of the
Green’s function, from the recordings of an isotropic distribution of random noise sources is studied
by evaluating the amplitude of the variance of the cross-correlation function. The leading term in the
expression of the variance depends on the recorded energy by both receivers and the time-bandwidth
product of the recordings. The variance of the time derivative of the correlation function has a
similar dependency. These simple analytic formulas show a good agreement with the variance
determined experimentally for the correlation of ocean ambient noise for averaging time varying
from 1 to 33 min. The data were recorded in shallow water at a depth of 21-m water depth in the
frequency band �300–530 Hz� for receivers separation up to 28 m. © 2005 Acoustical Society of
America. �DOI: 10.1121/1.2109059�
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I. INTRODUCTION

Experimental and theoretical analysis have shown that
the arrival-time structure of the time-domain Green’s func-
tion �TDGF� can be estimated from the time derivative of the
time-averaged ambient noise cross-correlation function
�NCF� in various environments and frequency ranges of in-
terest: helioseismology,1 ultrasonics,2–6 underwater
acoustics,7–9 and seismology.10–14 The physical process un-
derlying this noise cross-correlation technique is similar for
all these environments. Initially, the small coherent compo-
nent of the noise field at each receiver is buried in the spa-
tially and temporally incoherent field produced by the distri-
bution of noise sources. The coherent wavefronts emerge
from a correlation process that accumulates contributions
over time from noise sources whose propagation path passes
through both receivers.

Based on theoretical and experimental results,6,8,11,12,15

the following relationship between the TDGF between two
receivers a and b, located respectively at r�a and r�b, and the
time derivative of the expected value of the NCF �Ca,b����
can be stated:

d�Ca,b����
d�

� − G�r�a,r�b;�� + G�r�b,r�a;− �� . �1�

In Eq. �1�, the terms on the rhs are respectively �1� the
TDGF, which comes from noise events that propagate from
receiver a to b and yields a positive correlation time-delay �,
and �2� the time-reversed TDGF, which comes from noise
events that propagate from receiver b to a and yields a nega-
tive correlation time delay −�. Thus, for a uniform noise
source distribution or a fully diffuse noise field, the deriva-

a�
Electronic mail: ksabra@mpl.ucsd.edu

3524 J. Acoust. Soc. Am. 118 �6�, December 2005 0001-4966/2005/1
tive of the NCF is an antisymmetric function with respect to
time, the NCF itself being a symmetric function. The exact
relationship �in amplitude and arrival times� between the
time derivative of the time-averaged NCF and the determin-
istic TDGF generally depends of specific noise source distri-
bution and the environment. For instance, the source direc-
tionality creates shading of the wavefronts of the NCF with
respect to the true TDGF.7,8

Experimental results typically show that a sufficiently
long time-averaging interval �as long as environmental
changes do not modify the acoustic propagation paths� and a
spatially homogeneous noise distribution helps in estimating
the arrival-time structure of the TDGF from this correlation
process.2,7,9 Determining precisely the dependence of the
emergence rate of the coherent wavefronts of the NCF on the
noise recording duration and the various environment param-
eters is essential for practical applications. This emergence
rate �or convergence rate� can be defined based on the vari-
ance of the NCF. Indeed, the variance corresponds to the
fluctuations of the NCF around its expected value whose
time derivative is an estimate of the TDGF.

An upper bound on the variance of the NCF has been
previously derived in the case of a homogeneous medium
with embedded scatterers.11 Furthermore, a formulation of
the variance of the NCF for open systems and closed systems
based on a modal expansion of the Green’s function for the
case of local diffuse fields has also been presented.16 In this
paper, an expression of the variance of the NCF is derived
independently of the particular expression of the Green’s
function �free space, modal or rays expansion,. . .� for the
environment of interest �e.g., ultrasonic experiments, under-
water acoustics, seismology,. . .� and of the shape of the noise
spectrum. This resulting analytic formula variance of the
NCF is derived assuming only �1� an isotropic distribution of

impulsive random noise sources and �2� a finite duration
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Green’s function, which is true for any physical systems in
the presence of attenuation. Furthermore, this formulation is
readily extended to the variance of the time derivative of the
NCF. In the case of a white noise model and finite bandwidth
recordings, this analytic formula reduces to previous deriva-
tions when using a homogeneous free-space model11 or a
modal expansion of the Green’s function.16,17 The analytic
results are compared to the variance of experimental NCF
obtained from ocean noise recordings of various duration up
to 33 min in the frequency band �300–530 Hz�. The ambient
noise data were recorded on a bottom array in shallow water
during the Adaptive Beach Monitoring �ABM 95�
experiment.9

This article is divided into five sections. Section II pre-
sents a time-domain formulation of the NCF. Section III de-
rives an analytic formula for the variance of the NCF and the
time derivative of the NCF. Section IV provides an overview
of the ABM 95 experiment and discusses the ambient NCFs
obtained. Experimental measures of the variance of the NCF
are then compared to the theoretical predictions of Sec. III.
Section V summarizes the findings and conclusions drawn
from this study.

II. FORMULATION OF THE AMBIENT NOISE
CROSS-CORRELATION FUNCTION „NCF…

The signal recorded at two receivers a and b located
respectively at r�a and r�b from a single random noise source
�located at r�1, broadcasting at a time t1� is fully determined
by the TDGF in the environment of interest, which for in-
stance is noted G�r�1 ,r�a ; t− t1� between this random source
and receiver a.18 Here, the causality requires that the noise
source in �r�1 ; t1� that contributes to the pressure field in a at
a given time t satisfy the condition t� t1. We assumed that
the �impulse� response of both receiver a and b is embedded
in the TDGF. The random impulse noise sources are assumed
to follow a shot-noise model which is appropriate for broad-
band noise sources realizations.8,19 In this model each noise
source broadcasts, at a random time t1, a signal S�r�1 ; t1�. The
resulting noise waveforms are represented by a random pulse
train consisting of similarly shaped pulses randomly distrib-
uted in time. In the case of white noise, the noise sources
have a flat frequency spectrum.19 In the present context, ran-
dom means that the discrete events giving rise to the pulses
are temporally and spatially incoherent in the limit of infinite
recording time and infinite bandwidth �due to the impulsive
nature of the sources� and have the same amplitude Q
�whose unit depends on the variable being measured, e.g.,
pressure or displacement�. The statistical law governing the
distribution of the events in time is the Poisson probability
density function and has a creation rate � �m−3s−1� per unit
time per unit volume. Hence the second-order moment of the
uncorrelated noise sources can be written as8,15

�S�r�1;t1�S�r�2;t2�� = �Q2��r�1 − r�2� · ��t1 − t2� . �2�

In practice, the contribution of the noise sources is limited in
range due to attenuation. The total field at receiver a location

is then
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P�r�a;t� = �
−�

+�

dr�1�
−�

t

dt1S�r�1;t1�G�r�1,z1,r�a,za;t − t1� .

�3�

In a stationary medium, the temporal NCF Ca,b��� be-
tween the signals recorded by both receivers is defined as

Ca,b��� = �
−Tr /2

Tr /2

dtP�r�a;t�P�r�b;t + �� . �4�

In practice, the NCF is constructed from ensemble averages,
denoted by � �, over realizations of the noise source signals
S�r�1 ; t1�. The integration over the variable t, i.e., the record-
ing time for receiver a and b, corresponds to an accumula-
tion of noise sources events over time. In practice, the sig-
nals recorded by receivers a and b are correlated only over a
finite interval Tr �including both positive and negative time
delays�.15 For short correlation time � �i.e., ��Tr� with re-
spect to the recording duration at each receiver Tr, the taper-
ing of the NCF which occurs otherwise on the edges of the
finite correlation interval, i.e., for ��Tr, can be neglected.

Assuming a noise statistical model given by Eq. �2�,
using Eq. �3�, and after performing a change of variables u
= t− t1, the ambient noise cross-correlation function defined
in Eq. �4� can be expressed as

�Ca,b���� = �Q2Tr�
−�

+�

dr�1�
0

+�

duG�r�1,r�a;u�G�r�1,r�b;� + u� .

�5�

The TDGF has typically a finite temporal length noted
TGreen, i.e., the time duration after which no more multipath
arrivals can be detected. In practice, the value of the param-
eter TGreen depends on absorption, on the ambient noise level,
and on the receiver dynamics �and sensitivity�. Hence the
relationship between the TDGF between the receivers a and
b and the time derivative of the expected value of the NCF
given by Eq. �1� shows that after sufficient averaging of the
NCF and for time delay ��TGreen, only small residual fluc-
tuations are measured by the NCF. The level of these fluc-
tuations corresponds to the square of the variance �or stan-
dard deviation� of this noise correlation process noted
Var�Ca,b����. A measure of the variance Var�Ca,b���� gives
an estimate of the residual error done when approximating
the TDGF by the time derivative of the NCF and is thus a
key quantity to evaluate. Based on the time-domain formal-
ism developed in this section, a simplified formulation of the
variance of this noise correlation process Var�Ca,b���� is de-
veloped in the following section for an arbitrary TDGF with
a finite temporal length TGreen.

III. VARIANCE OF THE AMBIENT NOISE
CORRELATION FUNCTION. THEORY

A. Variance of the NCF

The variance of the ambient noise cross-correlation pro-
cess, i.e., the square of the mean level of the fluctuations, is

16
defined as
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Var�Ca,b���� = �Ca,b
2 ���� − �Ca,b����2, �6�

where the expected value of �Ca,b���� is given by Eq. �5�. By
combining Eqs. �3� and �4�, the expression of Ca,b

2 ��� can be
expanded as

Ca,b
2 ��� = �

−Tr /2

Tr /2

dt�
−Tr /2

Tr /2

dt̃�
−�

+�

dr�1�
−�

+�

dr�2�
−�

+�

dr�3

��
−�

+�

dr�4�
−�

t

dt1�
−�

t

dt2�
−�

t̃

dt3�
−�

t̃

dt4

�S�r�1;t1�S�r�2;t2�S�r�3;t3�S�r�4;t4�

�G�r�1,r�a;t − t1�G�r�2,r�b;� + t − t2�

�G�r�3,r�a; t̃ − t3�G�r�4,r�b;� + t̃ − t4� . �7�

Assuming that the random sources are temporally and
spatially incoherent with Gaussian statistics, the expression
of the fourth-order moment �S�r�1 ; t1�S�r�2 ; t2�S�r�3 ; t3�S�r�4 ; t4��
reduces to

�S�r�1;t1�S�r�2;t2�S�r�3;t3�S�r�4;t4��

= �S�r�1;t1�S�r�2;t2���S�r�3;t3�S�r�4;t4��

+ �S�r�1;t1�S�r�3;t3���S�r�2;t2�S�r�4;t4��

+ �S�r�1;t1�S�r�4;t4���S�r�2;t2�S�r�3;t3�� . �8�

Each of the three terms on the rhs in Eq. �8� can be further
simplified by using Eq. �2� for each of the second-order mo-
ments. By substituting this simplified form Eq. �8� in Eq. �7�
and after performing spatial and temporal integration of the
noise source distribution for the dirac terms ��ti− tj� and
��r�i−r� j� where i , j=1, . . . ,4 are the indices of the source
terms in Eqs. �7� and �8�, the expression of �Ca,b

2 ���� reduces
to three integral terms:

�Ca,b
2 ���� = I��� + J��� + K��� . �9�

The first integral term I��� is obtained after spatial and tem-
poral integration over source indices i=2 and i=4. Its ex-
pression reduces to �Ca,b����2 by comparison with Eq. �5�:

I��� = Q4�2	�
−Tr /2

Tr /2

dt�
−�

+�

dr�1�
−�

t

dt1G�r�1,r�a;t − t1�

�G�r�1,r�b;� + t − t1�

�	�

−Tr /2

Tr /2

dt̃�
−�

+�

dr�3�
−�

t̃

dt3G�r�3,r�a; t̃ − t3�

�G�r�3,r�b;� + t̃ − t3�

= �Ca,b����2. �10�

The second integral term J��� in Eq. �9� is obtained after
spatial and temporal integration over source indices i=3 and

i=4,
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J��� = Q4�2�
−Tr /2

Tr /2

dt�
−Tr /2

Tr /2

dt̃	�
−�

+�

dr�1�
−�

t

dt1G�r�1,r�a;t − t1�

�G�r�1,r�a; t̃ − t1�
	�
−�

+�

dr�2�
−�

t

dt2G�r�2,r�b;� + t − t2�

�G�r�2,r�b;� + t̃ − t2�
 . �11�

This expression of the integral term J��� can be simplified by
performing the following change of variables u= t− t1, v= t
− t2 and q= t− t̃:

J��� = Q4�2�
−Tr /2

Tr /2

dt�
−Tr

Tr

dq	�
−�

+�

dr�1�
0

+�

duG�r�1,r�a;u�

�G�r�1,r�a;q + u�
	�
−�

+�

dr�2�
0

−�

dvG�r�2,r�b;� + v�

�G�r�2,r�b;q + � + v�
 . �12�

By identification with the simplified form of �Ca,b���� in Eq.
�5�, J��� further reduces to

J��� =
1

Tr
�

−Tr

Tr

dq�Ca,a�q���Cb,b�q�� , �13�

where the autocorrelation functions of the ambient noise sig-
nals recorded at receivers a and b are noted respectively as
Ca,a�q� and Cb,b�q�.

The third integral term K��� in Eq. �9� is obtained after
spatial and temporal integration over the remaining source
indices i=4 and i=3,

K��� = Q4�2�
−Tr /2

Tr /2

dt�
−Tr/2

Tr/2

dt̃	�
−�

+�

dr�1�
−�

t

dt1

�G�r�1,r�a;t − t1�G�r�1,r�b;� + t̃ − t1�

�	�

−�

+�

dr�2�
−�

t

dt2G�r�2,r�a; t̃ − t2�G�r�2,r�b;� + t − t2�
 .

�14�

In a similar way, we can simplify the expression of the inte-
gral term K��� in Eq. �14� by performing the following
change of variables u= t− t1, v= t̃− t2 and q= t− t̃:

K��� = Q4�2�
−Tr /2

Tr /2

dt�
−Tr

Tr

dq	�
−�

+�

dr�1�
0

+�

du

�G�r�1,r�a;u�G�r�1,r�b;� + q + u�

�	�

−�

+�

dr�2�
0

+�

dvG�r�2,r�a;v�G�r�2,r�b;� − q + v�
 .

�15�

By identification with the simplified form of �Ca,b���� in Eq.

�5� we then get
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K��� =
1

Tr
�

−Tr

Tr

dq�Ca,b�� + q���Ca,b�� − q�� . �16�

Based on Eq. �1�, the arrival-time structure of the NCF
�Ca,b��±q�� is determined by TDGF Ga,b��±q�. Further-
more, the measured TDGF has a finite duration, i.e., has zero
values for running time larger than the temporal length of the
retrived TDGF TGreen �i.e., ��±q � �TGreen�. Hence, using the
following approximation,

�
−Tr

Tr

dq�Ca,b�� + q���Ca,b�� − q�� � Ga,b���2 → 0,

if � � TGreen, �17�

the value of K��� for large correlation time delay ��TGreen

can be neglected compared to the value of J��� �see Eq.
�13��. Thus using Eqs. �9� and �10� and substituting the
result in Eq. �6� and for large correlation time-delay �
�TGreen, the leading term in the expression of the variance
of the NCF is J���:

�Var�Ca,b����TGreen
= J��� + K���

�
�

−�

+�

dq�Ca,a�q���Cb,b�q��

Tr
. �18�

Equation �18� gives a formulation of the variance without
making specific assumptions on the particular expression of
the TDGF nor for the spectral properties of the noise sources.
Indeed, this formulation holds for any linear systems as long
as the corresponding TDGF has a finite temporal response,
which is generally the case due to the presence of attenua-
tion.

Under the assumption of white noise model and finite
bandwidth recordings B�, the expression of the variance of
the NCF given in Eq. �18� can be further reduced. The power
spectral densities of receivers a and b are noted respectively
	a,a��� and 	b,b���. Assuming that the recorded noise has a
white spectrum, or after perfoming an preliminar noise whit-
ening operation in practice �see Sec. IV A�, the noise spec-
trum power densities are then a constant in the frequency
band of interest: 	a,a���=Ca,a�0� /2B� and 	b,b���
=Cb,b�0� /2B�, where B� is the frequency bandwidth of in-
terest. Thus, using the Wiener-Khintchine theorem, and as-
suming that the recording time Tr is sufficiently long so that
�−Tr

Tr exp�i��+���q� dq=���+���, the following approxima-
tion can be made for finite bandwidth recordings:

�
−Tr

Tr

dq�Ca,a�q���Cb,b�q��

= 4�
�c−B� /2

�c+B� /2

d�	a,a����
�c−B� /2

�c+B� /2

d��	b,b������� + ���

=
�Ca,a�0���Cb,b�0��

2B�

, �19�
where �c is the center frequency of the noise recordings.
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Hence, for this simplified white noise model, the variance of
the NCF reduces to

�Var�Ca,b����TGreen
�

�Ca,a�0���Cb,b�0��
2B�Tr

=

�
0

Tr

dtP�r�a;t�2 · �
0

Tr

dtP�r�b;t�2

2B�Tr
.

�20�

The simplified expression of the variance �Var�Ca,b����TGreen
given by Eq. �20� is a constant proportional to the product
of the total recorded energy by each receiver �which in-
cludes the receiver response, noise source amplitude, and
potential site effects� and inversely proportional to the
recorded time-bandwidth product TrB� where Tr is the re-
cording time and B� is the frequency bandwidth of inter-
est. A similar dependency of the variance on the recorded
time-bandwidth product has been previously derived for
the case of a finite number of scatterers �or source events�
embedded in a homogeneous medium.11 Furthermore, this
simple formulation in Eq. �20� reduces to previous deri-
vations for the case of modal expansions in local diffuse
fields.16,17 For open systems using finite bandwidth
Gaussian tone bursts, Eq. �20� corresponds to the leading
term in Eq. �41� in Ref. 16. For finite bodies with constant
modal density, Eq. �20� corresponds to Eq. �17� in Ref.
17, which is also the leading term in Eq. �38� of the same
reference article.

B. Variance of the time derivative of the NCF

As shown in Eq. �1�, the arrival-time structure of the
TDGF should be estimated in practice using the time deriva-
tive of the NCF and not the NCF itself. From Eq. �5� we
have

d�Ca,b����
d�

= �Q2Tr�
−�

+�

dr�1�
0

+�

duG�r�1,r�a;u�

�
dG�r�1,r�b;� + u�

d�
. �21�

The variance Var�d�Ca,b��� /d��� of the time derivative of
the NCF is defined similarly as in Eq. �6�,

Var	dCa,b���
d�


 = 	d�Ca,b����
d�


2� −  d�Ca,b����
d�

�2

,

�22�

and can be readily estimated following similar derivations
presented in the previous section. The main difference is the
substitution of terms containing a Green’s function with the
time-delay variable � �e.g., G�r�i ,r�b ;�+u�, i=1, . . . ,4� by
their time derivative �i.e., dG�r�i ,r�b ;�+u� /d��. Hence

Var	dCa,b���
d�


 = DJ��� + DK��� . �23�
The first integral term DJ��� in Eq. �23� reduces to

Sabra et al.: Emergence rate noise cross correlation 3527



DJ��� =
1

Tr
�

−Tr

+Tr

dq�Ca,a�q���DCb,b�q�� , �24�

where �DCb,b�q�� is the autocorrelation of the derivative of
the signals recorded at b, dP�r�b ; t� /dt:

�DCb,b�q�� =�
−�

+�

dt
dP�r�b;t�

dt

dP�r�b;t + q�
dt � . �25�

The second integral term DK��� in Eq. �23� reduces to

DK��� =
1

Tr
�

−Tr

Tr

dq dCa,b�� + q�
d�

dCa,b�� − q�
d�

� . �26�

Based on Eq. �1�, we can use the following approximation

 dCa,b�� + q�
d�

� dCa,b�� − q�
d�

� � Ga,b���2��p� . �27�

Hence using similar arguments to the previous section the
value of DK for large correlation time delay ��TGreen is
negligible compare to the expression DJ �see Eq. �24��.
Thus to first order for large correlation time delay �
�TGreen, the leading term in the expression of the variance
Var�dCa,b��� /d�� is DJ:

�Var	dCa,b���
d�


�
��TGreen

=

�
−�

+�

dq�Ca,a�q���DCb,b�q��

Tr
.

�28�

Note that this expression in Eq. �28� does not seem to be
symmetric with respect to the role of receivers a and b since
only the signal recorded in b is derived. However, if the
ambient noise sources are uniformly distributed in space and
time, have similar statistics, and the receiver responses are
identical, then the signals recorded by receivers a and b have
the same characteristics. Note the requirement on the noise
source statistics to correctly estimate the TDGF from the
NCF. In this case Ca,a�q��Cb,b�q� and DCa,a�q��DCb,b�q�.
Thus the roles of receiver a and b in Eq. �28� are indeed
interchangeable.

Assuming a white noise model and a finite bandwidth
recordings B� and using similar derivations done for Eq.
�19�, the general expression of the variance of the time de-
rivative of the NCF given in Eq. �28� reduces to

�Var	dCa,b���
d�


�
��TGreen

�
�Ca,a�0���DCb,b�0��

2B�Tr
. �29�

The simplified expression of the variance of the time deriva-
tive of the NCF given by Eq. �29� is a constant proportional
to the product of the recorded energy by receiver a and the
energy of the time derivative of the signal recorded by re-
ceiver b �which includes the receiver responses, site effects,
and noise source amplitude� and inversely proportional to the

time bandwidth product Tr B�.
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IV. EXPERIMENTAL RESULTS

A. Experimental measure of the NCF

Ambient noise recordings were collected during the
Adaptive Beach Monitoring experiment �ABM 95� near the
southern California coast.9 A bottom horizontal array was
deployed along roughly a north-south direction at an average
depth of 21 m in a range-independent environment �see Fig.
1�. This low frequency �2–750 Hz� hydrophone array had 64
elements with an interelement spacing of Dmax=1.875 m
�equal to half-wavelength spacing at 400 Hz� �see Fig. 2�.
The sampling frequency was fs=1500 Hz and the array ele-
ments had a flat response between approximately 3 and
720 Hz. All array elements were time synchronized. In the

FIG. 1. Model of the range-independent environment in the vicinity of the
NS array during the ABM95 experiment. The two closest CTD casts were
not measured exactly above the location of the arrays but instead in shal-
lower depth �around 15 m, closer to the shoreline� or deeper depth �around
40 m, in the offshore direction from the array�. These up and down CTD
casts �double lines� are from 0 to 21 m �the water depth at the array loca-
tion� only.

FIG. 2. �Color online� Shape of the bottom array obtained from inversion
results.9 Array elements location are indicated by dots. The origin of the axis
coordinates is centered on the middle of the array. The normalized plane
wave beamformer output of the array is superimposed on the array shape.
Dashed lines shows angular direction with increment of 30°. Three dashed
circles indicate the 10-, 20-, and 30-dB level contour levels of the beam-

former output.
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vicinity of the array location, the water sound speed at the
ocean bottom remained nearly constant at approximately
1495 m/s during this experiment. Details of the experimen-
tal setup have been previously presented.9

At night, the underwater acoustic ambient noise field
was dominated by biological sounds over the 50-Hz to 1-kHz
frequency band and the nighttime spectral levels in this band
were raised by as much 30 dB over those measured during
daylight.20 The ambient noise field was generated mainly by
members of the croaker fish �Sciaenidae� family which mi-
grated at night from the surf zone out to the 21-m water
where the bottom hydrophone arrays were located. These
noise power spectra exhibit repeatable features of similar in-
tensity throughout the ABM experiment in the 300–700-Hz
bandwidth dominated by the croaker sounds consisting of a
dominant spectral energy peak between 300 and 530 Hz and
a weaker secondary peak between 600 and 700 Hz.9 Ambient
noise data were filtered in the frequency band �300–530 Hz�
where the recording amplitude was maximal and the noise
field was then created mainly by the distributed croaker
fishes. The filtered data were further equalized in the fre-
quency band �300–530 Hz� and a smoothing window was
also applied �using a Haning window raised to the power
0.25� in order to render the noise spectrum more uniform
before cross correlation. This corresponds to a noise whiten-
ing operation for the recorded noise waveforms in the fre-
quency bandwidth of interest. The noise cross-correlation
technique works best when the noise distribution is uniform
in space and time.4,7,11,10 Hence data clipping is used subse-
quently to reduce eventual influence of episodic energetic
events �e.g., a loud fish sound close to an hydrophone� which
would otherwise dominate the cross correlation. An ampli-
tude threshold of three times the standard deviation of the
filtered and equalized noise data was used instead of using a
simple but rougher one-bit truncation.4,14 Figure 3 shows the
normalized spectrogram of the 30th array element, in the
frequency band 300–530 Hz using 11 min of ambient noise
after time-frequency equalization.

Conventional plane wave beamforming was used to
verify that the spatial distribution of noise sources surround-

FIG. 3. Normalized spectrogram of 11 min of ambient noise recordings
after time-frequency equalization �in the frequency band 300–530 Hz� from
JD160 �starting at 0530 UTC�, recorded by element 30 of the bottom array
�see Fig. 2�.
ing the array was almost uniform. The beamformer output
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from the noise data was normalized by the beamformer out-
put for the case of uniform superposition of plane waves
coming from all directions �i.e., from 0° to 360°� to compen-
sate for the array directivity pattern �or array theoretical re-
sponse� in the case of a perfectly isotropic noise source dis-
tribution. The normalized beamformer output was averaged
incoherently across 70 frequencies spanning the whole fre-
quency band 300–530 Hz with a 3.3-Hz increment. The re-
sulting nearly uniform normalized beamformer output shows
that the directionality of the croaker sounds was nearly iso-
tropic �see Fig. 2�. This confirms previous observations that
the bottom hydrophone array was located in the midst of the
fish schools.20 Based on Figs. 2 and 3, the ambient noise field
appears to be uniform in space and time in this frequency
band. Thus theoretical predictions developed in Sec. II can
be used to estimate the variance of the NCF computed from
this experimental data set.

Figure 4�a� represents the NCF between the 15th and
30th elements of the north-south array which were separated
approximately by 28 m �see Fig. 1�. The NCF was obtained
using 33 min of ambient noise recordings �see Fig. 3�. The
normalized NCF NCa,b��� was computed as the ratio of the
NCF and the square root of the recorded energy of each
receiver so that the autocorrelation is equal to 1:

NCa,b��� =
Ca,b���

Ca,a�0�Cb,b�0�
. �30�

As expected, the time delays obtained from the NCF are
symmetric in time because of the uniform surface noise dis-
tribution around the horizontal array �as shown in Fig. 2�.
Thus, for a pair of receivers i=30 and j=15, the correspond-

FIG. 4. �Color online� �a� Ambient noise cross-correlation function �NCF�
Ci,j���, between element i=30 and i=15 of the bottom array �see Fig. 2�.
Thirty-three minutes of ambient noise recordings �in the frequency band
B�=300–530 Hz� were used. The amplitude of the square root of the vari-
ance, measured between 0.5
�
2s, is indicated by the black lines. �b�
Time derivative of the same NCF which can be used to estimate the arrival
time structure of the Green’s function. �c� Zoom around the positive and
negative arrival times to compare the two time series: the negative time
derivative of the NCF −dCi,j��� /d� �solid line� and the NCF itself Ci,j���
�dashed line�. The two time series were resampled at 15 kHz and normalized
to their maxima.
ing NCF Ci,j���, for ��0, is a mirror image of the NCF,
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Ci,j���, for �
0, with respect to the time-delay origin �=0
�see Eq. �1��. Figure 4�b� represents the time derivative of the
NCF displayed in Fig. 4�a�. The derivative of the NCF is an
antisymmetric function with respect to time, the NCF itself
being a symmetric function. The time derivative of the NCF
exhibits a clear double-peak structure associated with direct
arrival of the TDGF.9 The ambient noise recorded on the
hydrophone array has a relatively small bandwidth B�

= �300 Hz, 530 Hz�. Hence at first sight the time series of
the NCF and its time derivative will look nearly identical.
Figure 4�c� compares more closely the two time series
−dCi,j��� /d� �solid line�, which yields the theoretical esti-
mate of the true TDGF, to the NCF Ci,j��� �dashed line�. The
waveforms are similar but with a phase shift �for narrow-
band signals� corresponding here to a small time delay of
0.5 ms, which yields an error estimate in separation distance
of 0.75 m. For a stationary pair separated by large distances
with respect to the wavelength, thus yielding large arrival
times, this small time delay is often insignificant and within
the error bound associated with travel-time measurements.
However, for small distances, e.g., 28 m in this case or
roughly 7.5 wavelengths, this small time delay can cause a
significant error in travel-time measurements. Thus, using
the derivative of the NCF yields a crucial difference for the
precise measurement required for array element localization9

or small-scale tomography.
The time derivative of the NCF clearly shows the direct

arrivals of the TDGF between two array elements; however,
other multipath arrivals of the TDGF do not appear as
clearly. This is most likely due to the multiple interaction
with the moving free surface and the high attenuation bottom
for the coherent components of the noise field propagating
between the receivers along high angle paths. Indeed, in the
presence of environmental fluctuation, the contribution of
these noise components to the time-averaged NCF may not
average coherently over long recording time period, i.e., Tr

in the order of tenths of minutes. Thus the high angle paths
may not emerge as reliably over time from the time-averaged
NCF. Furthermore, even though the dominant noise sources
�croakers� are uniformly distributed around the array, they
may be quite directional since the croakers are typically lo-
cated close to the hard ocean bottom �thus approaching
baffled sources�. Hence the shading introduced by the direc-
tionality of the noise sources may also further reduce the
emergence of the high angle paths in the NCF.7,8

B. Experimental measure of the variance of the NCF

Following the theoretical discussions in Sec. II, the vari-
ance of the NCF was computed for long time-delay 0.5 s
� �� � �2 s, much larger than the maximal travel time be-
tween array elements which is �N−1�Dmax/c0�0.08 s,
where N=64 and Dmax=1.875 m. For instance, the square
root of the variance is indicated by a thick line for respec-
tively the NCF and its time derivative in Figs. 4�a� and 4�b�,
corresponding to a receiver separation distance of 28 m and
a recording time Tr=33 min. To investigate the variations of
the variance of the NCF, the experimental NCF was com-

puted for six receiver pairs spaced from 1.82 to 27.65 m
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�using element 30 as the first receiver and by using different
hydrophones as the second receivers� for increasing record-
ing time from 6.6 s to 33 min by increments of 6.6 s.

Since the ambient noise recordings were windowed in
the frequency bandwidth �300–530 Hz�, the effective fre-
quency bandwidth B�

E was indeed smaller: B�
E �180 Hz for

most receiver pairs. Figure 5 compares the ratio of the ex-
perimental measurements of the variance of the NCF and the
theoretical predictions for the variance of the NCF given by
Eq. �20� for increasing recording time Tr and for each of the
six receiver pairs using the effective bandwidth B�

E. The ratio
Var�Ca,b�. �2B�

ETr� / ��Ca,a�0���Cb,b�0��� remains close to one
for all receiver pairs and recording time Tr larger than 1 min.
For this short bandwidth, the amplitudes of the time deriva-
tive of NCF and of the NCF itself were almost identical �see
Fig. 4�. The ratio between the variance of the time derivative
of the NCF and the corresponding theoretical predictions
given by Eq. �29� yielded identical curves as in Fig. 5, all
very close to 1. The theoretical predictions deviate from the
experimental results for a small recording time-window
length Tr �below 1 min here�, which is insufficient for the
time averaging for the ambient noise statistics to converge.
Furthermore, the deviations of the noise source distributions
from the case of an isotropic distribution may also affect the
results.9

V. CONCLUSIONS

Theoretical predictions of the variance of the ambient
noise cross-correlation function �NCF� between two receiv-
ers �and of its time derivative� have been derived and were
simplified assuming a finite temporal length for the Green’s
function and a white noise nodel. The dominant term for
simplified expression of the variance of the NCF is a con-
stant proportional to the product of the recorded energy by
both receivers and inversely proportional to the time-
bandwidth product Tr B� where Tr is the recording time and

FIG. 5. �Color online� Ratio of the experimental measurements of the vari-
ance and the simplified theoretical predictions for the variance of the NCF
given by Eq. �20� for increasing recording time Tr and for six receiver pairs
with increasing separation distance L. This ratio is Var�Ca,b�
��2B�

ETr� / ��Ca,a�0���Cb,b�0��� for two receivers a and b. The effective
bandwidth was set to B�

E �180 Hz.
B� is the frequency bandwidth of the recordings �see Eq.
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�20��. The expression of the recorded energy includes the
receiver responses, site effects, and noise source amplitude.
The variance of the time derivative of the NCF has a similar
dependency but the recorded energy by one of the receivers
is now replaced by the energy of the time derivative of the
recorded signals instead �see Eq. �29��. These simple analytic
formulas provide a way to quantify the signal-to-noise ratio
of the NCF and its time derivative.9,13 A good agreement
with experimental measurement of the variance of the NCF
was found for ocean ambient noise recordings in shallow
water in the frequency band �300–530 Hz� for receiver sepa-
rations up to 28 m.

For such short separation distances between elements
and strong bottom absorption, it was mentioned in Sec. III A
that multipath arrivals of the NCF are not likely to be ob-
served since they should have indeed a weak amplitude. Pro-
vided there is a simple estimate of the amplitude of the mul-
tipath arrivals �e.g., using a ray code18�, the theoretical
predictions given by Eq. �20� can be used to estimate the
minimal duration of the noise recordings for the variance of
the NCF to fall below a certain detection threshold for those
arrivals. For the ABM95 environment and noise statistics the
recording time should amount to several hours in order to
have sufficient averaging time for the weak multipath arriv-
als to emerge from the NCF. However, fluctuations of the
environment �e.g., tides, moving free surface, change of wa-
ter sound speeds� render the acoustic paths nonstationary
over such long durations and thus would prevent the coher-
ent emergence of these multipath arrivals. On the other hand,
for a more stable environment such as the earth crust in
seismology applications, the theoretical predictions given by
Eq. �20� can help to specify the amount of averaging neces-
sary to recover both surface waves as well as body waves
from seismic noise recordings.13,14
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